Water flows from a container as shown in the figure. Determine the loss coefficient needed in the valve if the water is to "bubble up" a distance h above the outlet pipe.

$$
\begin{aligned}
& H_{1}=45 \mathrm{in} \\
& L_{1}=18 \mathrm{in} \\
& L_{2}=32 \mathrm{in} \\
& H_{2}=2 \mathrm{in} \\
& h=3 \mathrm{in}
\end{aligned}
$$

The pipe is $1 / 2$ in diameter galvanized iron pipe with threaded fittings.

Water flows from a container as shown in the figure. Determine the loss coefficient needed in the valve if the water is to "bubble up" a distance h above the outlet pipe.

$$
\begin{aligned}
& H_{1}=45 \mathrm{in} \\
& L_{1}=18 \mathrm{in} \\
& L_{2}=32 \mathrm{in} \\
& H_{2}=2 \mathrm{in} \\
& h=3 \mathrm{in}
\end{aligned}
$$

The pipe is $1 / 2$ in diameter galvanized iron pipe with threaded fittings.

Solution:

- Apply the Extended Bernoulli En from (2) \rightarrow (3):

$$
\underbrace{(1)}\left\{\left(\frac{p}{p g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{3}=\left(\frac{p}{p g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{2}-H_{L_{2 \rightarrow 3}}+H_{s_{2 \rightarrow 3}}\right.
$$

where $p_{2}=p_{3}=p_{\text {aten }}$

$$
\left.\begin{array}{l}
\bar{V}_{2}=? \quad \begin{array}{l}
\bar{V}_{3}=0 \quad \begin{array}{l}
\text { Assume }+10015 \\
z_{3}-z_{2}, h
\end{array} \\
\\
H_{L_{2}=3}=0 \\
H_{s_{2 \rightarrow 3}}=0
\end{array} \\
\Rightarrow \alpha_{2}=1 \\
\bar{V}_{2}=\sqrt{2 g h} \quad \text { For } g=32.2 \mathrm{ft} / \mathrm{s}= \\
h=3 \mathrm{in}=1 / 4 \mathrm{ft}
\end{array}\right\} \Rightarrow \bar{V}_{2}=4.01 \mathrm{ft} / \mathrm{s}
$$

- Apply the Extended Bernoulli En from (1) \rightarrow (3):

$$
\left(\frac{b}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{3}=\left(\frac{p}{\rho g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{1}-H_{L_{103}}+H_{s_{103}}
$$

where $p_{3}=p_{1}=b_{\text {ane }}$

$$
\begin{aligned}
& \bar{V}_{2}=\bar{V}_{3}=0 \\
& z_{1}=H_{1} \quad z_{3}=H_{2}+h
\end{aligned}
$$

SOLUTION...

$$
H_{L 1 \rightarrow 3}=\sum_{i} K_{i} \frac{\bar{v}^{2}}{2 g}=K_{\text {entrance }} \frac{\overline{\bar{V}}_{\text {athene }}^{2}}{2 g}+K_{\text {viscous }} \frac{\bar{V}_{\text {pix }}^{2}}{2 g}+2 K_{\text {abibend }} \frac{\bar{V}_{\text {bead }}^{2}}{2 g}+K_{\text {allure }} \frac{\bar{V}_{\text {value }}^{2}}{2 g}
$$

where $\bar{V}_{\text {entrance }}=\bar{V}_{\text {pipe }}=\bar{V}_{\text {bead }}=\bar{V}_{\text {value }}=\bar{V}_{z}$

$$
\begin{aligned}
& K_{\text {entrance }}=0.05 \\
& K_{90^{\circ} \text { beat }}=1.5
\end{aligned}
$$

Note: Kexit $=0$ since water discharging into air.

$$
K_{\text {viscous }}=f\left(\frac{L}{D}\right)=f\left(\frac{L_{1}+L_{2}+H_{2}}{D}\right)
$$

where $f=0.044$ (from Moody chart)

$$
\begin{aligned}
\text { with } R_{e_{D}} & =\frac{\nabla_{2} D}{\nu}=\frac{(4.01 \mathrm{ft} / \mathrm{s})(0.5 \mathrm{in})\left(\frac{\mathrm{ft}}{12 \mathrm{in}}\right)}{1.21 \times 10^{-5 \mathrm{ft} 2 / \mathrm{s}}} \\
& \Rightarrow R_{e_{D}}=13,800 \quad\left(\begin{array}{c}
\text { turbulent flaw! } \\
\alpha \approx 1 \text { assumption valid) }
\end{array}\right.
\end{aligned}
$$

$$
\text { and } \quad \epsilon / D=\frac{0.0005 f t}{(0.5 \text { in })\left(\frac{f t}{12 i n}\right)}=0.012
$$

- Substitute and simplify:

$$
H_{2}+h-H_{1}=-\frac{\bar{V}_{2}^{2}}{2 g}\left[K_{\text {advance }}+2 K_{\text {bead }}+f\left(\frac{L_{1}+L_{2}+H_{2}}{D}\right)+K_{\text {value }}\right]
$$

- Solve for Kualve

$$
\Rightarrow k_{\text {value }}=5.9
$$

