Water at $10^{\circ} \mathrm{C}$ (kinematic viscosity of $1.307^{*} 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$) is to flow from a roof-top reservoir to a tanker truck through a cast iron pipe (roughness of 0.26 mm) of length 20 m at a flow rate of $0.0020 \mathrm{~m}^{3} / \mathrm{s}$. The roof-top tank water level is located 2 m above the tanker truck fluid level. The system contains a sharpedged entrance, six threaded 90° elbows, and a sharp-edged exit. Determine the required pipe diameter for the given flow conditions.

Water at $10^{\circ} \mathrm{C}$ (kinematic viscosity of $1.307 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$) is to flow from a rooftop reservoir to a tanker truck through a cast iron pipe (roughness of 0.26 mm) of length 20 m at a flow rate $00.0020 \mathrm{~m}^{3} / \mathrm{s}$. The rooftop tank water level is located 2 m above the tanker truck fluid level. The system contains a sharpedged entrance, six threaded 90° elbows, and a sharp-edged exit. Determine the required pipe diameter for the given flow conditions.

SOLUTION:

- Apply the Extended Bernalli: En from (1) to (2):

$$
\left(\frac{p}{p g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{2}=\left(\frac{f}{p g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{1}-H_{L_{1,2}}+H_{s_{1,2}}
$$

where $\quad p_{1}=p_{2}=p a t m$

$$
\bar{V}_{1}=\bar{V}_{2} \approx 0
$$

$$
z_{1}-z_{2}=2 m
$$

$$
\begin{aligned}
H_{S} 1 \rightarrow 2 & =0 \\
H_{L i \rightarrow 2} & =\frac{\bar{V}_{p}^{2}}{2 g}[\underbrace{K_{\text {mayence }}}_{\text {major }}+K_{\text {eat }}+6 K_{\text {elbow }}+K_{\text {exit }}] \\
& =f\left(\frac{L}{D}\right)
\end{aligned}
$$

Solution...

- Substitute

$$
\begin{aligned}
& \Delta z=\frac{\bar{V}_{p}^{2}}{2 g}\left[f\left(\frac{L}{D}\right)+K_{\text {entrance }}+6 K_{\text {elbow }}+K_{\text {exit }}\right] \\
& \text { - For } \Delta z=2 \mu \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& \bar{V}_{p}=\frac{Q}{\left(\frac{\pi D^{2}}{4}\right)}=\frac{0.0020 \mathrm{~m}^{3} / \mathrm{s}}{\frac{\pi D^{2}}{4}}=\frac{2.55 \times 10^{-3} \mathrm{~m} / \mathrm{s}}{D^{2}} \\
& L=20 \mathrm{~m} \\
& \text { Retrace }=0.5 \\
& K_{\text {elbow }}=1.5 \\
& K_{\text {exit }}=1 \\
& \Rightarrow 39.24 \mathrm{~m}^{2} / \mathrm{s}^{2}=\frac{6.50 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}}{D^{4}}\left[f \frac{20 \mathrm{~m}}{D}+0.5+6(1.5)+1\right] \\
& \Rightarrow \quad\left(6.04 \times 10^{6} / 1 / \mu^{4}\right) D^{5}-10.5 D-(20 / \mu) f=0
\end{aligned}
$$

NOTE: The friction factor, f, deperics on both R_{D} and ϵ / D :

$$
\begin{aligned}
& R_{e_{D}}=\frac{\bar{V}_{P} D}{\nu}=\frac{\left(\frac{2.55 \times 10^{-3} \mathrm{~m}^{3 / \mathrm{s}}}{D^{2}}\right) D}{1.307 \times 10^{-6 \mathrm{~m}^{2} / \mathrm{s}}}=\frac{(1950 \mathrm{~m})}{D} \\
& \epsilon / D=\frac{(0.00026 \mathrm{~m})}{D}
\end{aligned}
$$

Solution...

- To solve for D we must iterate to a solution since f is also a function of D (because of the Re_{D} and ϵ / D depardance). The iterative procedure is as follows:

1) Choose a value of D
\longrightarrow 2) Calculate $\operatorname{Re}_{D}: \quad R_{C_{D}}=\frac{\left(1950_{\mu}\right)}{D}$
2) Calculate $\epsilon / D: \quad \epsilon / D=\frac{\left(2.6 \times 10^{-4} \mu\right)}{D}$
3) Determine f from Moody chart.
4) Determine f from $=\left(6.04 \times 10^{6} / \mathrm{m}^{4}\right) D^{5}-10.5 D-(20 \mathrm{~m}) f=0$
5) Are the two f s the same?

No. Choose a new value of D.

SOLUTION...

- Choose

$$
\begin{aligned}
& D=0.04 \mathrm{~m} \\
& \Rightarrow R_{e_{D}}=48,800 \\
& \Rightarrow \epsilon / D=0.0065 \\
& \Rightarrow f_{\text {mooDY }}=0.038 \\
& \Rightarrow f_{e_{2 n}}=0.010
\end{aligned}
$$

the two $f s$ are not equal
-Choose $D=0.05 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow R_{e_{D}}=39,000 \\
& \Rightarrow E / D=0.0052 \\
& \Rightarrow f_{\text {moody }}=0.033 \\
& \Rightarrow f_{\text {epa }}=0.068
\end{aligned}
$$

the two $f s$ are not equal

- Choose $D=0.045 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow R_{e_{D}}=43,300 \\
& \Rightarrow \epsilon / D=0.0058 \\
& \Rightarrow f_{\text {moon }}=0.032 \\
& \Rightarrow f_{\text {eqn }}=0.032
\end{aligned}
$$

the two f_{s} are equal

Solution...

- An alternative viterative method for finding D is: (and more computationally intensive)

1) Choose a value of D
\rightarrow 2) Calculate $\operatorname{Re}_{D}: \quad \operatorname{Re}_{D}=\frac{\left(195 \mathrm{O}_{\mathrm{m}}\right)}{D}$
2) Calculate $E / D: \quad \epsilon / D=\frac{\left(2.6 \times 10^{-4}\right)}{D}$
3) Determine f from Moody chart.
4) Determine D from: $\left(6.04 \times 10^{6} n^{4}\right) D^{5}-10.5 D$-(zarf $=0$
5) Are the two Dr the same?

No? Use the value of D from step 5

END and iterate.

Solution...

- Choose

$$
\begin{aligned}
& D=0.040 \mathrm{~m} \\
& \Rightarrow R_{e_{B}}=48,800 \\
& \Rightarrow \epsilon / D=0.0065 \\
& \Rightarrow f_{\text {MooDY }}=0.038 \\
& \Rightarrow D_{\text {egg }}=0.046 \mathrm{~m}
\end{aligned}
$$

the guessed D and calculated D are not the same

- Choose

$$
\begin{aligned}
& D=0.046 \mathrm{~m} \\
& \Rightarrow R_{e_{D}}=42,400 \\
& \Rightarrow G / 0=0.0057 \\
& \Rightarrow f_{\text {ropy }}=0.033 \\
& \Rightarrow D_{\text {eon }}=0.045 \mathrm{n}
\end{aligned}
$$

the two values of D are not the same

- Choose $D=0.045 \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow R_{e_{D}}=43,300 \\
& \Rightarrow E / D=0.0058 \\
& \Rightarrow f_{\text {moo or }}=0.032 \\
& \Rightarrow D_{\text {equ }}=0.045 \mu
\end{aligned}
$$

the two values of D ARE the same

$$
\therefore D=0.045 \mathrm{~m}
$$

