A train travels through a tunnel as shown in the figure. The train and tunnel are both circular in cross section. The tunnel has a diameter of $D=3 \mathrm{~m}$, a total length of $L=2000 \mathrm{~m}$, and walls comprised of concrete. The clearance between the train and the tunnel wall is small so that it may be assumed that the air in front of the train is pushed through the tunnel with the same speed as the train, $V=20 \mathrm{~m} / \mathrm{s}$.

1. Determine the pressure difference between the front and rear of the train when the train is a distance, x, from the tunnel entrance.
2. Determine the power, P, required to produce the air flow in the tunnel when the train is a distance, x, from the tunnel entrance.

A train travels through a tunnel as shown in the figure. The train and tunnel are both circular in cross section. The tunnel has a diameter of $D=3 \mathrm{~m}$, a total length of $L=2000 \mathrm{~m}$, and walls comprised of concrete. The clearance between the train and the tunnel wall is small so that it may be assumed that the air in front of the train is pushed through the tunnel with the same speed as the train, $V=20 \mathrm{~m} / \mathrm{s}$.

1. Determine the pressure difference between the front and rear of the train when the train is a distance, x, from the tunnel entrance.
2. Determine the power, P, required to produce the air flow in the tunnel when the train is a distance, x, from the tunnel entrance.

Solution:

- Apply the Extended Bernoulli Eq from (1) to (2) and from (3) th:

$$
\begin{aligned}
& \left(\frac{p}{p g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{p}+\alpha \frac{\bar{v}^{2}}{2 q}+z\right)_{1}-H_{L}+H_{s_{i \rightarrow 2}} \\
& \left(\frac{p}{p g}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{4}=\left(\frac{p}{\rho q}+\alpha \frac{\bar{v}^{2}}{2 g}+z\right)_{3}-H_{L_{3 \rightarrow 4}}+H_{s_{3 \rightarrow 4}}
\end{aligned}
$$

where $\quad p_{1}=p_{\text {atm }}$

$$
p_{3}=?
$$

$$
p_{2}=? \quad p_{4}=\text { patna }
$$

$$
\bar{V}_{1}=0
$$

$$
\bar{V}_{3}=V
$$

since flow is expected to be turbulent, $\alpha_{2}=\alpha_{3} * 1$

$$
\bar{V}_{2}=V \quad \bar{V}_{4}=0
$$

$$
R_{e}=\frac{V D}{V_{\text {air }}}=\frac{(20 \mathrm{~N} / \mathrm{s})(3 \mu)}{\left(1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)}
$$

$$
z_{1}=z_{2}=z_{3}=z_{4}
$$

$$
\begin{array}{ll}
H_{L 1-2}=f\left(\frac{x}{D}\right) \frac{v^{2}}{2} & H_{S_{1-2}}=0 \\
H_{L 3-4}=f\left(\frac{L-x}{D}\right) \frac{V^{2}}{2} & H_{53-4}=0
\end{array}
$$

$$
=4 \times 10^{6}
$$

Note: Neglecting entrance \& exit losses since
tunnel is so long.

Solution...

$$
\begin{aligned}
& \frac{p_{2}}{\rho g}+\frac{v^{2}}{2 g}=\frac{p_{a+m}}{\rho g}-f\left(\frac{x}{D}\right) \frac{v^{2}}{2 g} \\
& \frac{p_{a+m}}{\rho g}=\frac{p_{z}}{\rho g}+\frac{v^{2}}{2 g}-f\left(\frac{L-x}{D}\right) \frac{v^{2}}{2 g}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{p_{2}-p_{a+\mu}}{\rho g}=-\left(1+f\left(\frac{x}{D}\right)\right) \frac{v^{2}}{2 g} \\
& \frac{p_{3}-p_{a+r}}{\rho g}=\left(f\left(\frac{L-x)}{D}\right)-1\right) \frac{v^{2}}{2 g} \\
& \Rightarrow \quad \frac{p_{3}-p_{2}}{\rho g}=\left[f\left(\frac{L-x}{D}\right)-1+1+f\left(\frac{x}{D}\right)\right] \frac{v^{2}}{2 g} \\
& =f\left(\frac{L}{D}\right) \frac{v^{2}}{z g} \\
& p_{3}-p_{2}=\frac{1}{2} \rho f\left(\frac{L}{b}\right) v^{2} \\
& \text { - For } \rho=1.2 \mathrm{ks} / \mathrm{m}^{3} \\
& f=0.016 \text { Fond from Many chat w/ } \\
& L=2000 \mathrm{~m} \quad \epsilon=1.7 \times 10^{-3} \mathrm{~m} \text { (coocath) } \\
& D=3 \mathrm{~m} \\
& V=20 \mathrm{~m} / \mathrm{s} \quad D=3 \mathrm{n} \\
& -p_{2}-p_{1}-2560 \mathrm{~Pa} \\
& \mathrm{Re} \cdot 4 \times 10^{6} \text { (form provias frye) } \\
& \Rightarrow \epsilon / D=5.7 \times 10^{-4}
\end{aligned}
$$

- Power is given by

$$
P=F \cdot v=(\Delta p)\left(\frac{\pi p^{2}}{4}\right) V
$$

For $\left.\begin{array}{l}\Delta p=2560 \mathrm{~Pa} \\ D=3 \mathrm{~m} \\ v=20 \mathrm{M} / \mathrm{s}\end{array}\right\} \Rightarrow P=360 \mathrm{KW}$

