For straightening and smoothing an air flow in a 50 cm diameter duct, the duct is packed with a "honeycomb" of 30 cm long, 4 mm diameter thin straws. The inlet flow is air moving at an average velocity of $6 \mathrm{~m} / \mathrm{s}$. Estimate the pressure drop across the honeycomb. The density of the air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and the kinematic viscosity is $1.5 \mathrm{e}-5 \mathrm{~m}^{2} / \mathrm{s}$. You may neglect inlet and outlet minor losses.

SOLUTION:

Apply the Extended Bernoulli’s Equation from point 1 to point 2.
thousands of straws

where

$$
\begin{equation*}
\frac{p_{2}-p_{1}}{\rho g}=\frac{\Delta p}{\rho g}=? \quad \text { (This is what we're trying to find.) } \tag{2}
\end{equation*}
$$

$\left(\alpha \frac{\bar{V}^{2}}{2 g}\right)_{2}=\left(\alpha \frac{\bar{V}^{2}}{2 g}\right)_{1}$
$z_{2}=z_{1}$
$H_{S, 1 \rightarrow 2}=0$ (There is no shaft work between points 1 and 2.)
$H_{L, 1 \rightarrow 2}=\left(f \frac{L_{S}}{D_{S}}\right) \frac{\bar{V}_{S}^{2}}{2 g}$ (where the subscript " S " refers to the conditions in the straw)
Note that minor losses have been neglected.
Substitute and re-arrange.

$$
\begin{equation*}
\frac{\Delta p}{\rho g}=-\left(f \frac{L_{S}}{D_{S}}\right) \frac{\bar{V}_{S}^{2}}{2 g} \tag{7}
\end{equation*}
$$

Now determine the average flow velocity in the straw, \bar{V}_{S}. Note that the flow rate through the pipe must be the same as the flow rate through all of the straws.

$$
\begin{equation*}
\bar{V}_{P} \frac{\pi}{4} D_{P}^{2}=N_{S} \bar{V}_{S} \frac{\pi}{4} D_{S}^{2} \tag{8}
\end{equation*}
$$

where the number of straws, N_{S}, is:

$$
\begin{equation*}
\frac{\pi}{4} D_{P}^{2}=N_{S} \frac{\pi}{4} D_{S}^{2} \Rightarrow N_{S}=\left(\frac{D_{P}}{D_{S}}\right)^{2} \tag{9}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
\bar{V}_{S}=\bar{V}_{P} \tag{10}
\end{equation*}
$$

Now determine the friction factor for the flow through the straw. First calculate the straw's Reynolds number.

$$
\begin{align*}
& \operatorname{Re}_{S}=\frac{\bar{V}_{S} D_{S}}{v}=\frac{(6 \mathrm{~m} / \mathrm{s})(4 e-3 \mathrm{~m})}{\left(1.5 e-5 \mathrm{~m}^{2} / \mathrm{s}\right)}=1600 \Rightarrow \text { laminar flow in the straws } \tag{11}\\
& \Rightarrow f=\frac{64}{\operatorname{Re}_{S}} \tag{12}
\end{align*}
$$

Substitute Eqn. (12) into Eqn. (7) and solve for the pressure drop. using the given data.

$\frac{\Delta p}{\rho g}=-\left(\frac{64}{\operatorname{Re}_{S}} \frac{L_{S}}{D_{S}}\right) \frac{\bar{V}_{S}^{2}}{2 g}$
$\therefore \Delta p=-64.8 \mathrm{~Pa}$

