When a weight W is placed on a piston with an area A, fluid in an inclined manometer moves from point 1 to point 2. What is W in terms of the fluid density ρ, gravitational acceleration g, the displacement L, the piston area A, and the tube arm angle θ ?

SOLUTION:
Analyzing the manometer after the weight is applied,
$p_{\text {atm }}=p_{\text {piston }}-\rho g L \sin \theta$,
where the (absolute) pressure in the fluid just below the piston is,
$p_{\text {piston }}=p_{a t m}+\frac{W}{A}$.
Combine both equations and solve for W,
$p_{a t m}=p_{a t m}+\frac{W}{A}-\rho g L \sin \theta$,
$W=\rho g L A \sin \theta$.

