

Determine the gage pressure at points B, C, D, and E in the system shown below.

(3)

SOLUTION:

First determine the pressure at point B,

$$p_B = p_A + \rho g (h_A - h_B).$$
(1)
Note that the pressure at A is $p_A = p_{\text{atm}} = 0$ (gage).

Now determine the gage pressure at C using the known pressure at B,

$$p_c = p_B - \rho g (h_c - h_B)$$
⁽²⁾

The pressure at point D will be the same as the pressure at point C since both contact the same air and we're assuming the variations in air pressure over the small elevations in this problem are negligible,

$$p_D = p_C$$
.

The pressure at point E is,

$$p_E = p_D - \rho g (h_E - h_D)$$
(4)

Using the given data,

p_A	$= p_{\text{atm}} = 0 \text{ (gage)}$
ρ	$= 1000 \text{ kg/m}^3$
g	$= 9.81 \text{ m/s}^2$
h_A	= 6 m
h_B	= 2 m
h_C	= 7 m
h_D	= 5 m
h_E	= 10 m
\Rightarrow	$p_B = 39.2 \text{ kPa} \text{ (gage)}$
	$p_C = -9.8 \text{ kPa} \text{ (gage)}$
	$p_D = -9.8 \text{ kPa} \text{ (gage)}$
	$p_E = -58.9 \text{ kPa} \text{ (gage)}$