Determine the gage pressure at points $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E in the system shown below.

$$
\begin{aligned}
h_{A} & =6 \mathrm{~m} \\
h_{B} & =2 \mathrm{~m} \\
h_{C} & =7 \mathrm{~m} \\
h_{D} & =5 \mathrm{~m} \\
h_{E} & =10 \mathrm{~m}
\end{aligned}
$$

SOLUTION:

First determine the pressure at point B,

$$
\begin{equation*}
p_{B}=p_{A}+\rho g\left(h_{A}-h_{B}\right) . \tag{1}
\end{equation*}
$$

Note that the pressure at A is $p_{A}=p_{\mathrm{atm}}=0$ (gage).
Now determine the gage pressure at C using the known pressure at B ,

$$
\begin{equation*}
p_{C}=p_{B}-\rho g\left(h_{C}-h_{B}\right) \tag{2}
\end{equation*}
$$

The pressure at point D will be the same as the pressure at point C since both contact the same air and we're assuming the variations in air pressure over the small elevations in this problem are negligible,

$$
p_{D}=p_{C} .
$$

The pressure at point E is,

$$
\begin{equation*}
p_{E}=p_{D}-\rho g\left(h_{E}-h_{D}\right) . \tag{4}
\end{equation*}
$$

Using the given data,

\[

\]

