Water flows downward through a pipe inclined at a $\theta=45^{\circ}$ to the horizon as shown in the figure. The pressure difference $p_{A}-p_{B}$ is due partly to gravity and partly to viscous dissipation. Determine the pressure difference if $L=$ 5 m and $h=6 \mathrm{~cm}$. Mercury is the working fluid in the manometer.

SOLUTION:

The pressure at B may be written in terms of the pressure at A using,

$$
\begin{align*}
& p_{B}=p_{A}+\rho_{H_{2}} g(L \sin \theta+l+h)-\rho_{H_{g}} g h-\rho_{H_{2} O} g l \tag{1}\\
& p_{B}-p_{A}=\rho_{H_{2}} g(L \sin \theta+h)-\rho_{H_{2} O} S G_{H_{g}} g h \tag{2}\\
& p_{A}-p_{B}=\rho_{H_{2}} g\left[S G_{H g} h-(L \sin \theta+h)\right] \tag{3}\\
& p_{A}-p_{B}=\rho_{H_{2}} g\left[\left(S G_{H_{g}}-1\right) h-L \sin \theta\right] \tag{4}
\end{align*}
$$

Using the given data,

$$
\begin{array}{ll}
\rho_{H 2 O} & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
S G_{H g} & =13.6 \\
h & =0.06 \mathrm{~m} \\
L & =5 \mathrm{~m} \\
\theta & =45^{\circ} \\
\Rightarrow & p_{A}-p_{B}=-27.3 \mathrm{kPa}
\end{array}
$$

