Assuming that air is incompressible, determine the height of a column of air required to give a pressure difference of 0.1 psi . Assume that the density of air is $2.38 * 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$.

SOLUTION:

Assuming air as being incompressible:

$$
\begin{aligned}
& p_{\text {bottom }}=p_{\text {top }}+\rho_{\text {air }} g h \\
& h=\frac{p_{\text {bottom }}-p_{\text {top }}}{\rho_{\text {air }} g}
\end{aligned}
$$

$p_{\text {bottom }}$

For:
$p_{\text {bottom }}-p_{\text {top }}=0.1 \mathrm{psi}=14.4 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}$
$\rho_{\text {air }} \quad=2.38^{*} 10^{-3}$ slug $/ \mathrm{ft}^{3}$
$g \quad=32.2 \mathrm{ft} / \mathrm{s}^{2}$
gives:
$h=188 \mathrm{ft}$
Hence, very large elevation differences must occur to give appreciable differences in pressure when dealing with atmospheric air (or gases in general).

Another way to determine the height, h, is to perform a vertical force balance on the column.

$$
\begin{aligned}
& \sum F_{y}=0=-p_{\text {bottom }} d A+p_{\text {top }} d A+\rho_{\text {air }} g h d A \\
& \left.h=\frac{p_{\text {bottom }}-p_{\text {top }}}{\rho_{\text {air }} g} \quad \text { (Same answer as above! }\right)
\end{aligned}
$$

