Compartments A and B of the tank shown in the figure below are closed and filled with air and a liquid with a specific gravity equal to 0.6 . If atmospheric pressure is $101 \mathrm{kPa}(\mathrm{abs})$ and the pressure gage reads 3.5 kPa (gage), determine the manometer reading, h.

SOLUTION:

First determine the pressure at 2 in terms of the pressure at 1.

$$
\begin{equation*}
p_{2}=p_{1}-\rho_{\mathrm{Hg}} g L_{1} \tag{1}
\end{equation*}
$$

Now determine the pressure at 3 in terms of the pressure at 2 .

$$
\begin{equation*}
p_{3}=p_{2}-\rho_{\text {liquid }} g\left(h+L_{2}\right) \tag{2}
\end{equation*}
$$

Now determine the pressure at 4 in terms of the pressure at 3 .

$$
\begin{equation*}
p_{4}=p_{3}+\rho_{\mathrm{H} 20} g h \tag{3}
\end{equation*}
$$

Combine Eqns. (1)-(3).

$$
\begin{align*}
& p_{4}=p_{1}-\rho_{\mathrm{Hg}} g L_{1}-\rho_{\mathrm{liquid}} g\left(h+L_{2}\right)+\rho_{\mathrm{H} 20} g h \\
& p_{4}=p_{1}-\rho_{\mathrm{H} 20} S G_{\mathrm{Hg}} g L_{1}-\rho_{\mathrm{H} 20} S G_{\text {liquid }} g\left(h+L_{2}\right)+\rho_{\mathrm{H} 20} g h \\
& p_{4}-p_{1}=-\rho_{\mathrm{H} 20} g\left[S G_{\mathrm{Hg}} L_{1}+S G_{\text {liquid }} h+S G_{\text {liquid }} L_{2}-h\right] \\
& \frac{p_{1}-p_{4}}{\rho_{\mathrm{H} 20} g}-S G_{\mathrm{Hg}} L_{1}-S G_{\text {liquid }} L_{2}=h\left(S G_{\text {liquid }}-1\right) \\
& h=\frac{1}{\left(1-S G_{\text {liquid }}\right)}\left[S G_{\mathrm{Hg}} L_{1}+S G_{\text {liquid }} L_{2}+\frac{p_{4}-p_{1}}{\rho_{\mathrm{H} 20} g}\right] \tag{4}
\end{align*}
$$

Using the given data:

$$
\begin{array}{ll}
p_{1} & =101 \mathrm{kPa}(\text { abs })=0 \mathrm{~Pa} \text { (gage) } \\
p_{4} & =3.5 \mathrm{kPa}(\text { gage })=3500 \mathrm{~Pa} \text { (gage) } \\
S G_{\mathrm{Hg}} & =13.6 \\
S G_{\text {liquid }} & =0.6 \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\rho_{\mathrm{H} 20} & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
L_{1} & =3.0 \mathrm{~cm}=3.0^{*} 10^{-2} \mathrm{~m} \\
L_{2} & =2.0 \mathrm{~cm}=2.0^{*} 10^{-2} \mathrm{~m}
\end{array}
$$

Solving Eqn. (4) for h gives:
$h=1.9 \mathrm{~m}$

