In the book/movie The Martian, the mission of a crew of astronauts is derailed by a massive Martian windstorm. If the Martian atmosphere has a density of $0.016 \mathrm{~kg} / \mathrm{m}^{3}$ and the wind speed is $26.8 \mathrm{~m} / \mathrm{s}(=60 \mathrm{mph})$, what is the drag force acting on astronaut Mark Watney? Based on wind tunnel testing, assume that the drag coefficient multiplied by the frontal projected area of a typical person is $C_{D} A=0.84 \mathrm{~m}^{2}$ (see, for example, Table 7.3
 in White, F.M., Fluid Mechanics, $7^{\text {th }}$ ed., McGraw-Hill).

What wind speed on Earth would produce an equivalent drag force?

SOLUTION:
The drag force is given by,

$$
\begin{equation*}
D=C_{D} \frac{1}{2} \rho_{\text {Mars }} V^{2} A, \tag{1}
\end{equation*}
$$

where,

$$
\begin{aligned}
& C_{D} A=0.84 \mathrm{~m}^{2} \text { (given), } \\
& \rho_{\text {Mars }}=0.016 \mathrm{~kg} / \mathrm{m}^{3}, \\
& V=26.8 \mathrm{~m} / \mathrm{s}, \\
& =D=4.8 \mathrm{~N}(=1.1 \mathrm{lb})
\end{aligned}
$$

Thus, we see that the author took considerable artistic liberty in portraying the damage caused by a Martian windstorm.

To determine the wind speed on Earth that would cause the same drag force, set the drag forces for Mars and Earth equal,

$$
\begin{align*}
& C_{D} \frac{1}{2} \rho_{\text {Mars }} V_{\text {Mars }}^{2} A=C_{D} \frac{1}{2} \rho_{\text {Earth }} V_{\text {Earth }}^{2} A, \tag{2}\\
& V_{\text {Earth }}=V_{\text {Mars }} \sqrt{\frac{\rho_{\text {Mars }}}{\rho_{\text {Earth }}}} . \tag{3}
\end{align*}
$$

Using $\rho_{\text {Earth }}=1.23 \mathrm{~kg} / \mathrm{m}^{3}, V_{\text {Earth }}=3.1 \mathrm{~m} / \mathrm{s}(=6.8 \mathrm{mph})$, which corresponds to a light breeze.

