A parachute was used during part of the landing sequence to deposit the Spirit rover on the Martian surface. The parachute had a fully-open, projected diameter of 14.1 m and was designed to slow the landing package (lander and rover) to a terminal speed of $65 \mathrm{~m} / \mathrm{s}$ (retro-rockets were used to bring the landing package to a near zero vertical velocity). If the mass of the landing package was 544 kg , what was the drag coefficient for the parachute? Assume the gravitational acceleration on Mars is $3.72 \mathrm{~m} / \mathrm{s}^{2}$ and that the density of the Martian atmosphere near the surface is $0.016 \mathrm{~kg} / \mathrm{m}^{3}$.

SOLUTION:

At terminal speed, the weight of the landing package must be balanced by the drag acting on the parachute (neglecting the drag on the landing package itself),

$$
\begin{equation*}
\sum F_{y}=0=D-W \tag{1}
\end{equation*}
$$

where,

$$
\begin{align*}
& D=c_{D} \frac{1}{2} \rho V_{T}^{2} A \tag{2}\\
& W=m g \tag{3}
\end{align*}
$$

Substitute and re-arrange to solve for the drag coefficient,
$c_{D} \frac{1}{2} \rho V_{T}^{2} A-m g=0$
$c_{D}=\frac{m g}{\frac{1}{2} \rho V_{T}^{2} A}$
Using the given data,

$$
\begin{array}{ll}
m & =544 \mathrm{~kg} \\
g & =3.72 \mathrm{~m} / \mathrm{s}^{2} \\
\rho & =0.016 \mathrm{~kg} / \mathrm{m}^{3} \\
V_{T} & =65 \mathrm{~m} / \mathrm{s} \\
A & =156.1 \mathrm{~m}^{2}\left(=\pi / 4 *(14.1 \mathrm{~m})^{2}\right) \\
\Rightarrow & c_{D}=0.38
\end{array}
$$

