The market price, P (in dollars), of used cars of a certain model is found to be:

$$
P=\$ 1000+(\$ 0.02 / \text { mile }) x-(\$ 2 / \text { day }) t
$$

where x is the distance in miles west of Detroit, MI and t is the time in days. If a car of this model is driven from Detroit at $t=0$ towards the west at a rate of 400 miles per day, determine:
a. whether the value of the car is increasing or decreasing, and
b. how much of this change is due to depreciation and how much is due to moving into a better market.

SOLUTION:

To determine if the value of the car is decreasing, take the Lagrangian derivative of the market price.

$$
\begin{equation*}
\frac{D P}{D t}=\frac{\partial P}{\partial t}+u \frac{\partial P}{\partial x}=(-\$ 2 / \text { day })+(400 \text { miles } / \text { day })(\$ 0.02 / \mathrm{mile}) \quad(\text { where } u \text { is the speed of the car }) \tag{1}
\end{equation*}
$$

$\therefore \frac{D P}{D t}=\$ 6 /$ day Hence, the value of the car is increasing.

The car depreciates at a rate of $-\$ 2 /$ day (this is $\partial P / \partial t$). The change in the car's value increases at a rate of $\$ 8 /$ day due to moving into a different market (this is $u \partial P / \partial x$).

