The large compressed-air tank shown in the figure exhausts from a nozzle at an exit velocity of $V_e = 235$ m/s. Assuming isentropic flow, compute:

- a. the pressure in the tank
- b. the exit Mach number
- c. Now consider a case where the exit velocity is not given and the tank pressure is 300 kPa (abs). For these conditions, determine the exit flow speed, V_E .

(2)

SOLUTION:

First determine the exit Mach number using:

$$Ma_e = \frac{V_e}{c} \tag{1}$$

The exit speed of sound, assuming ideal gas behavior, is given by:

$$c_e = \sqrt{\gamma R T_e}$$

where, for an adiabatic flow:

$$T_{0} = T_{e} + \frac{V_{e}^{2}}{2c_{p}}$$
(3)

Using the given data:

γ	=	1.4
R	=	287 J/(kg·K)
T_0	=	30 °C = 303 K
V_e	=	235 m/s
C_p	=	1005 J/(kg·K)
\Rightarrow	T_e	= 276 K
\Rightarrow	C_e	= 333 m/s
\Rightarrow	Ma	= 0.71

Since the exit Mach number is subsonic, the exit pressure will be equal to the back pressure, *i.e.* $p_e = p_{atm} = 101 \text{ kPa}$ (abs)

Assuming isentropic flow:

$$\frac{p_e}{p_0} = \left(1 + \frac{\gamma - 1}{2} \operatorname{Ma}_e^2\right)^{\gamma_{e,\gamma}}$$
Using the given data:

$$\Rightarrow p_0 = 141 \operatorname{kPa} (\operatorname{abs})$$

$$T \qquad p_0 \qquad (4)$$

Now consider the case where the exit velocity is not given, but the tank pressure is given as $p_0 = 300$ kPa (abs). First determine whether or not the flow is choked. For a converging nozzle, the flow is choked if,

$$\frac{p_B}{p_0} \le \frac{p^*}{p_0} = \left(1 + \frac{k-1}{2}\right)^{\frac{1}{1-k}} = 0.5283$$
(5)

Using the given data ($p_0 = 300 \text{ kPa}$ (abs) and $p_B = 101 \text{ kPa}$ (abs)), $p_B/p_0 = 0.3367$. Thus, the flow is choked for the given conditions and Ma_E = 1.

Since the exit is at sonic conditions, the speed of the flow there is,

$$V_E = V^* = c^* \underbrace{Ma^*}_{=1} = \sqrt{kRT^*}$$
 (6)

where

$$\frac{T^*}{T_0} = \left(1 + \frac{k-1}{2}\right)^{-1} \underset{k=1.4}{=} 0.8333 \tag{7}$$

Using the given data ($T_0 = 303$ K, k = 1.4, R = 287 J/(kg.K)), $T^* = 253$ K, and $V_E = 319$ m/s.