The large compressed-air tank shown in the figure exhausts from a nozzle at an exit velocity of $V_{\mathrm{e}}=235$
m / s. Assuming isentropic flow, compute:
a. the pressure in the tank
b. the exit Mach number
c. Now consider a case where the exit velocity is not given and the tank pressure is 300 kPa (abs). For these conditions, determine the exit flow speed, V_{E}.

SOLUTION:

First determine the exit Mach number using:

$$
\begin{equation*}
\mathrm{Ma}_{e}=\frac{V_{e}}{c_{e}} \tag{1}
\end{equation*}
$$

The exit speed of sound, assuming ideal gas behavior, is given by:

$$
\begin{equation*}
c_{e}=\sqrt{\gamma R T_{e}} \tag{2}
\end{equation*}
$$

where, for an adiabatic flow:

$$
\begin{equation*}
T_{0}=T_{e}+\frac{V_{e}^{2}}{2 c_{p}} \tag{3}
\end{equation*}
$$

Using the given data:

$$
\begin{aligned}
\gamma & =1.4 \\
R & =287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
T_{0} & =30^{\circ} \mathrm{C}=303 \mathrm{~K} \\
V_{e} & =235 \mathrm{~m} / \mathrm{s} \\
c_{p} & =1005 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
\Rightarrow & T_{e}=276 \mathrm{~K} \\
\Rightarrow & c_{e}=333 \mathrm{~m} / \mathrm{s} \\
\Rightarrow & \mathrm{Ma}_{e}=0.71
\end{aligned}
$$

Since the exit Mach number is subsonic, the exit pressure will be equal to the back pressure, i.e.

$$
p_{e}=p_{\mathrm{atm}}=101 \mathrm{kPa}(\mathrm{abs})
$$

Assuming isentropic flow:

$$
\begin{equation*}
\frac{p_{e}}{p_{0}}=\left(1+\frac{\gamma-1}{2} \mathrm{Ma}_{e}^{2}\right)^{\gamma / 1-\gamma} \tag{4}
\end{equation*}
$$

Using the given data:

$$
\Rightarrow \quad p_{0} \quad=141 \mathrm{kPa}(\mathrm{abs})
$$

Now consider the case where the exit velocity is not given, but the tank pressure is given as $p_{0}=300 \mathrm{kPa}$ (abs). First determine whether or not the flow is choked. For a converging nozzle, the flow is choked if,

$$
\begin{equation*}
\frac{p_{B}}{p_{0}} \leq \frac{p^{*}}{p_{0}}=\left(1+\frac{k-1}{2}\right)^{\frac{k}{1-k}} \underset{k=1.4}{=} 0.5283 \tag{5}
\end{equation*}
$$

Using the given data $\left(p_{0}=300 \mathrm{kPa}(\mathrm{abs})\right.$ and $\left.p_{B}=101 \mathrm{kPa}(\mathrm{abs})\right), p_{B} / p_{0}=0.3367$. Thus, the flow is choked for the given conditions and $\mathrm{Ma}_{E}=1$.

Since the exit is at sonic conditions, the speed of the flow there is,

$$
\begin{equation*}
V_{E}=V^{*}=c^{*} \underbrace{\mathrm{Ma}^{*}}_{=1}=\sqrt{k R T^{*}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{T^{*}}{T_{0}}=\left(1+\frac{k-1}{2}\right)^{-1} \underset{k=1.4}{\doteqdot} 0.8333 \tag{7}
\end{equation*}
$$

Using the given data $\left(T_{0}=303 \mathrm{~K}, k=1.4, R=287 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})\right), T^{*}=253 \mathrm{~K}$, and $V_{E}=319 \mathrm{~m} / \mathrm{s}$.

