The velocity field for a steady, incompressible, two-dimensional flow through a converging duct is approximated as,
$\mathbf{u}=\left(U_{0}+b x\right) \hat{\mathbf{i}}-b y \hat{\mathbf{j}}$,
where U_{0} is the horizontal speed at $x=0$ and b is a constant.
a. Derive an equation for the streamline of this flow passing through various points at the duct inlet, i.e., $\left(x_{0}=0, y_{0}\right)$.
b. Plot the streamlines found in part (a) for $U_{0}=1 \mathrm{~m} / \mathrm{s}$ and $b=1 \mathrm{~s}^{-1}$ over the range $x=[0,3 \mathrm{~m}]$ and $y_{0}=-2$ $\mathrm{m},-1 \mathrm{~m}, 0,1 \mathrm{~m}$, and 2 m .

SOLUTION:
The slope of the streamline is given by,

$$
\begin{equation*}
\frac{d y}{d x}=\frac{u_{y}}{u_{x}}=\frac{-b y}{U_{0}+b x} . \tag{1}
\end{equation*}
$$

Solving this differential equation gives,

$$
\begin{align*}
& \frac{d y}{d x}=\frac{-b y}{U_{0}+b x} \Rightarrow \int_{y=y_{0}}^{y=y} \frac{d y}{y}=-b \int_{x=x_{0}}^{x=x} \frac{d x}{U_{0}+b x} \Rightarrow \ln \left(\frac{y}{y_{0}}\right)=-\ln \left(\frac{U_{0}+b x}{U_{0}+b x_{0}}\right) \Rightarrow y=y_{0}\left(\frac{U_{0}+b x_{0}}{U_{0}+b x}\right), \tag{2}\\
& y=y_{0}\left(\frac{U_{0}}{U_{0}+b x}\right) \text { using }\left(x_{0}=0, y_{0}\right) . \tag{3}
\end{align*}
$$

These streamlines are plotted below for the given values of y_{0} and $U_{0}=1 \mathrm{~m} / \mathrm{s}$ and $b=1 \mathrm{~s}^{-1}$ over the given range of x. Note that the flow is from left to right in the figure since $u_{\mathrm{x}}>0$ for the given range of values.

