The velocity for a steady, incompressible flow in the $x y$ plane is given by,
$\mathbf{u}=\frac{A}{x} \hat{\mathbf{i}}+\frac{B y}{x} \hat{\mathbf{j}}$,
where $A=2 \mathrm{~m}^{2} / \mathrm{s}, B=1 \mathrm{~m} / \mathrm{s}$, and the coordinates x and y are measured in meters.
a. Obtain an equation for the streamline that passes through the point $(x, y)=(1 \mathrm{~m}, 3 \mathrm{~m})$.
b. Calculate the time required for a fluid particle to move from $x=1 \mathrm{~m}$ to $x=2 \mathrm{~m}$ in this flow field.

SOLUTION:
The slope of the streamline is given by,

$$
\begin{equation*}
\frac{d y}{d x}=\frac{u_{y}}{u_{x}}=\frac{B(y / x)}{A(1 / x)}=\frac{B}{A} y . \tag{1}
\end{equation*}
$$

Solving this differential equation gives,

$$
\begin{align*}
& \frac{d y}{d x}=\frac{B}{A} y \Rightarrow \int_{y=y_{0}}^{y=y} \frac{d y}{y}=\frac{B}{A} \int_{x=x_{0}}^{x=x} d x \Rightarrow \ln \left(\frac{y}{y_{0}}\right)=\frac{B}{A}\left(x-x_{0}\right) \Rightarrow y=y_{0} \exp \left[\frac{B}{A}\left(x-x_{0}\right)\right], \tag{2}\\
& y=(3 \mathrm{~m}) \exp \left[\left(\frac{1}{2} \mathrm{~m}^{-1}\right)(x-1 \mathrm{~m})\right] \text { using }\left(x_{0}, y_{0}\right)=(1 \mathrm{~m}, 3 \mathrm{~m}) . \tag{3}
\end{align*}
$$

To determine the time to travel from x_{1} to x_{2},

$$
\begin{equation*}
u_{x}=\frac{A}{x} \Rightarrow \frac{d x}{d t}=\frac{A}{x} \Rightarrow \int_{x=x_{1}}^{x=x_{2}} x d x=\int_{t=t_{1}}^{t=t_{2}} A d t \Rightarrow \frac{1}{2}\left(x_{2}^{2}-x_{1}^{2}\right)=A\left(t_{2}-t_{1}\right) \tag{4}
\end{equation*}
$$

$$
\Delta t=\frac{1}{2 A}\left(x_{2}^{2}-x_{1}^{2}\right)
$$

Using the given data,
$A=2 \mathrm{~m}^{2} / \mathrm{s}$
$x_{1}=1 \mathrm{~m}$,
$x_{2}=2 \mathrm{~m}$,
$\Rightarrow \Delta t=0.75 \mathrm{~s}$

