Air flows downward toward an infinitely wide horizontal flat plate. The velocity field is given by, $\mathbf{u}=(a x \hat{\mathbf{i}}-a y \hat{\mathbf{j}})[2+\cos (\omega t)]$,
where a and ω are constants.
a. Obtain an algebraic equation for a streamline at $t=0$.
b. Plot the streamline that passes through point $(x, y)=(3,3)$ at this instant.
c. Will the streamline change with time? Explain your answer.

SOLUTION:

The slope of the streamline is given by,

$$
\begin{equation*}
\frac{d y}{d x}=\frac{u_{y}}{u_{x}}=\frac{-a y[2+\cos (\omega t)]}{a x[2+\cos (\omega t)]}=-\frac{y}{x} . \tag{1}
\end{equation*}
$$

Solving this differential equation gives,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y}{x} \Rightarrow \int_{y=y_{0}}^{y=y} \frac{d y}{y}=-\int_{x=x_{0}}^{x=x} \frac{d x}{x} \Rightarrow \ln \left(\frac{y}{y_{0}}\right)=\ln \left(\frac{x_{0}}{x}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{y}{y_{0}}=\frac{x_{0}}{x} \text { or } y=\frac{x_{0} y_{0}}{x} . \tag{3}
\end{equation*}
$$

Through the point $\left(x_{0}, y_{0}\right)=(3,3)$, Eq. (3) becomes, $y=\frac{9}{x}$. The plot is shown below.

The streamlines won't change with time since the time components divide out in Eq. (1).

