A tornado can be represented in polar coordinates by the velocity field,

$$
\mathbf{u}=-\frac{a}{r} \hat{\mathbf{e}}_{r}+\frac{b}{r} \hat{\mathbf{e}}_{\theta}
$$

where $\hat{\mathbf{e}}_{r}$ and $\hat{\mathbf{e}}_{\theta}$ are unit vectors pointing in the radial (r) and tangential (θ) directions, respectively, and a and b are constants. Show that the streamlines for this flow form logarithmic spirals, i.e.

$$
r=c \exp \left(-\frac{a}{b} \theta\right)
$$

where c is a constant.

SOLUTION:

The slope of a streamline is tangent to the velocity vector. In polar coordinates, the streamline slope is given by:

$$
\begin{equation*}
\frac{\text { small displacement in } r \text {-direction }}{\text { small displacement in } \theta \text {-direction }}=\frac{d r}{r d \theta} \tag{1}
\end{equation*}
$$

so that the relation describing the streamline slope is:

$$
\begin{equation*}
\frac{d r}{r d \theta}=\frac{u_{r}}{u_{\theta}} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{r}=-\frac{a}{r} \tag{3}\\
& u_{\theta}=\frac{b}{r} \tag{4}
\end{align*}
$$

Substitute Eqns. (3) and (4) into Eqn. (2) and solve the resulting differential equation.

$$
\begin{align*}
& \frac{d r}{r d \theta}=\frac{-a / r}{b / r}=-\frac{a}{b} \\
& \int_{r_{0}}^{r} \frac{d r}{r}=-\frac{a}{b} \int_{\theta_{0}}^{\theta} d \theta \\
& \ln \left(\frac{r}{r_{0}}\right)=-\frac{a}{b}\left(\theta-\theta_{0}\right) \\
& \frac{r}{r_{0}}=\exp \left[-\frac{a}{b}\left(\theta-\theta_{0}\right)\right] \\
& \therefore r=c \exp \left[-\frac{a}{b} \theta\right] \tag{5}
\end{align*}
$$

where the constants r_{0} and θ_{0} have been incorporated into the constant c.

