Consider a 2D flow with a velocity field given by:

$$
\mathbf{u}=x(1+2 t) \hat{\mathbf{i}}+y \hat{\mathbf{j}}
$$

Determine the equations for the streamline, streakline, and pathline passing through the point $(x, y)=(1,1)$ at time $t=0$.

SOLUTION:

The slope of a streamline is tangent to the velocity vector.

$$
\begin{equation*}
\frac{d y}{d x}=\frac{u_{y}}{u_{x}} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{x}=x(1+2 t) \tag{2}\\
& u_{y}=y \tag{3}
\end{align*}
$$

Substitute Eqns. (2) and (3) into Eqn. (1) and solve the resulting differential equation.

$$
\begin{align*}
& \frac{d y}{d x}=\frac{y}{x(1+2 t)} \\
& (1+2 t) \int_{y_{0}}^{y} \frac{d y}{y}=\int_{x_{0}}^{x} \frac{d x}{x} \quad\left(\text { where }\left(x_{0}, y_{0}\right) \text { is a point passing through the streamline }\right) \\
& (1+2 t) \ln \left(\frac{y}{y_{0}}\right)=\ln \left(\frac{x}{x_{0}}\right) \\
& \left(\frac{y}{y_{0}}\right)^{(1+2 t)}=\left(\frac{x}{x_{0}}\right) \tag{4}
\end{align*}
$$

For the streamline passing through the point $\left(x_{0}, y_{0}\right)=(1,1)$ at time $t=0$:

$$
\begin{equation*}
y=x \tag{5}
\end{equation*}
$$

A streakline is a line that connects all of the fluid particles that pass through the same point in space. The equation for the streakline can be found parametrically using Eqns. (2) and (3).

$$
\begin{align*}
& u_{x}=\frac{d x}{d t}=x(1+2 t) \tag{6}\\
& u_{y}=\frac{d y}{d t}=y \tag{7}
\end{align*}
$$

Solve the previous two differential equations.

$$
\begin{array}{ll}
\int_{x_{0}}^{x} \frac{d x}{x}=\int_{t_{0}}^{t}(1+2 t) d t & \Rightarrow \\
\ln \left(\frac{x}{x_{0}}\right)=t+t^{2}-t_{0}-t_{0}^{2} \tag{9}\\
\int_{y_{0}}^{y} \frac{d y}{y}=\int_{t_{0}}^{t} d t & \Rightarrow
\end{array} \ln \left(\frac{y}{y_{0}}\right)=t-t_{0} \quad l
$$

where t_{0} is the time at which a fluid particle passes through the point $\left(x_{0}, y_{0}\right)$ on the streakline. Hence, the streakline passing through the point $\left(x_{0}, y_{0}\right)=(1,1)$ at time $t=0$ is given parametrically (in t_{0}) as:

$$
\begin{array}{lll}
\ln (x)=-t_{0}-t_{0}^{2} & \Rightarrow & x=\exp \left(-t_{0}-t_{0}^{2}\right) \\
\ln (y)=-t_{0} & \Rightarrow & y=\exp \left(-t_{0}\right) \tag{11}
\end{array}
$$

Recall that t_{0} is the time when a fluid particle passes through the point $\left(x_{0}, y_{0}\right)$.

A pathline is a line traced out by a particular fluid particle as it moves through space. The equation for the pathline can be found parametrically using Eqns. (2) and (3).

$$
\begin{align*}
& u_{x}=\frac{d x}{d t}=x(1+2 t) \tag{12}\\
& u_{y}=\frac{d y}{d t}=y \tag{13}
\end{align*}
$$

Solve the previous two differential equations.

$$
\left.\begin{array}{ll}
\int_{x_{0}}^{x} \frac{d x}{x}=\int_{t_{0}}^{t}(1+2 t) d t & \Rightarrow
\end{array} \ln \left(\frac{x}{x_{0}}\right)=t+t^{2}-t_{0}-t_{0}^{2}\right)
$$

where t_{0} is the time at which a fluid particle passes through the point $\left(x_{0}, y_{0}\right)$ on the pathline. Hence, the pathline for a particle passing through the point $\left(x_{0}, y_{0}\right)=(1,1)$ at time $t_{0}=0$ is given parametrically (in t) as:

$$
\begin{array}{lll}
\ln (x)=t+t^{2} & \Rightarrow & x=\exp \left(t+t^{2}\right) \\
\ln (y)=t & \Rightarrow & y=\exp (t) \tag{17}
\end{array}
$$

Note that the streamline, streakline, and pathline are all different. A plot of these lines through $(1,1)$ at $t=$ 0 is shown below.

