A velocity field is given by:

$$
\mathbf{u}=\frac{-V_{0} y}{\left(x^{2}+y^{2}\right)^{1 / 2}} \hat{\mathbf{i}}+\frac{V_{0} x}{\left(x^{2}+y^{2}\right)^{1 / 2}} \hat{\mathbf{j}}
$$

where V_{0} is a positive constant, i.e. $V_{0}>0$. Determine:
a. where in the flow the speed is V_{0}
b. the equation and sketch of the streamlines
c. the equations for the streaklines and pathlines

SOLUTION:

The speed is given by:

$$
\begin{equation*}
|\mathbf{u}|=\sqrt{u_{x}^{2}+u_{y}^{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{x}=\frac{-V_{0} y}{\left(x^{2}+y^{2}\right)^{1 / 2}} \tag{2}\\
& u_{y}=\frac{V_{0} x}{\left(x^{2}+y^{2}\right)^{1 / 2}} \tag{3}
\end{align*}
$$

Substituting into Eqn. (1) gives:

$$
\begin{align*}
& |\mathbf{u}|=\sqrt{\frac{V_{0}^{2} y^{2}}{\left(x^{2}+y^{2}\right)}+\frac{V_{0}^{2} x^{2}}{\left(x^{2}+y^{2}\right)}} \\
& \therefore|\mathbf{u}|=V_{0} \tag{4}
\end{align*}
$$

The flow speed is everywhere equal to V_{0}.
The slope of the streamline is tangent to the slope of the velocity vector:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{u_{y}}{u_{x}} \tag{5}
\end{equation*}
$$

Substitute Eqns. (2) and (3) and solving the resulting differential equation.

$$
\begin{align*}
& \frac{d y}{d x}=\frac{\frac{V_{0} x}{\left(x^{2}+y^{2}\right)^{1 / 2}}}{\frac{-V_{0} y}{\left(x^{2}+y^{2}\right)^{1 / 2}}}=\frac{x}{-y} \\
& -\int_{y_{0}}^{y} y d y=\int_{x_{0}}^{x} x d x \quad\left(\text { where }\left(x_{0}, y_{0}\right) \text { is a point located on the streamline }\right) \\
& -\frac{1}{2}\left(y^{2}-y_{0}^{2}\right)=\frac{1}{2}\left(x^{2}-x_{0}^{2}\right) \\
& x^{2}+y^{2}=x_{0}^{2}+y_{0}^{2}=\text { constant } \tag{6}
\end{align*}
$$

The streamlines are circles! Note that when $x>0$ and $y>0$, Eqns. (2) and (3) indicate that $u_{x}<0$ and $u_{y}>0$ (note that $V_{0}>0$) so that the flow is moving in a counter-clockwise direction.

Since the flow is steady, the streaklines and pathlines will be identical to the streamlines.

