The x-velocity component of a steady, 2 D , incompressible flow is given by: $u_{x}=y-x$
Determine the most general velocity component in the y-direction for this flow.

SOLUTION:

Consider the continuity equation:

$$
\begin{aligned}
& \frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}=0 \\
& \frac{\partial u_{y}}{\partial y}=-\frac{\partial u_{x}}{\partial x}=-\frac{\partial}{\partial x}(y-x)=1
\end{aligned}
$$

Integrate u_{y} with respect to y.

$$
\begin{equation*}
u_{y}=y+f(x) \tag{2}
\end{equation*}
$$

where $f(x)$ is an unknown function of x.
Double check:

$$
\begin{align*}
& \frac{\partial u_{x}}{\partial x}=\frac{\partial}{\partial x}(y-x)=-1 \tag{3}\\
& \frac{\partial u_{y}}{\partial y}=\frac{\partial}{\partial y}[y+f(x)]=1 \tag{4}\\
& \Rightarrow \frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}=-1+1=0 \quad \text { OK! } \tag{5}
\end{align*}
$$

