Air enters a turbine in steady flow at $0.5 \mathrm{~kg} / \mathrm{s}$ with negligible velocity. Inlet conditions are $1300^{\circ} \mathrm{C}$ and 2.0 MPa (abs). The air is expanded through the turbine to atmospheric pressure. If the actual temperature and velocity at the turbine exit are $500^{\circ} \mathrm{C}$ and $200 \mathrm{~m} / \mathrm{s}$, determine the power produced by the turbine. Determine the change in specific entropy for the process. Label state points on a $T s$ diagram for this process.

SOLUTION:

Apply the $1^{\text {st }}$ Law across the turbine to determine the power produced by the turbine.

$$
\begin{align*}
& m_{2}\left(h+\frac{1}{2} V^{2}\right)_{2}-m_{1}\left(h+\frac{1}{2} V^{2}\right)_{1}=Q_{\text {into }}+W_{\text {into }} \tag{1}\\
& W_{\text {into }}=m\left[c_{P}\left(T_{2}-T_{1}\right)+\frac{1}{2} V_{2}^{2}\right] \tag{2}
\end{align*}
$$

where
$m=m_{2}=m_{1} \quad$ (from conservation of mass)
$h_{2}-h_{1}=c_{P}\left(T_{2}-T_{1}\right) \quad$ (assuming the air behaves as a perfect gas)
$Q_{\text {into }}=0$ (flow through the turbine is assumed to occur adiabatically)
$V_{1} \approx 0 \quad$ (flow at the inlet has negligible velocity)

Substitute the given parameters.

m	$=0.5 \mathrm{~kg} / \mathrm{s}$
c_{P}	$=1004 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
T_{2}	$=(500+273)=773 \mathrm{~K}$
T_{1}	$=(1300+273)=1573 \mathrm{~K}$
V_{2}	$=200 \mathrm{~m} / \mathrm{s}$
$\therefore W_{\text {into }}$	$=-390 \mathrm{~kW}$ or $W_{\substack{\text { extracted } \\ \text { from air }}}=390 \mathrm{~kW}$

The change in the entropy during the process is:
$\Delta s=s_{2}-s_{1}=c_{P} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{p_{2}}{p_{1}}$

$\therefore \Delta s=140 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})>0 \quad(\Delta s>0$ for an adiabatic, irreversible process $)$

