A steady flow of air passes through the elbow-nozzle assembly shown. At the inlet (1), the pipe diameter is $D_{1}=0.1524 \mathrm{~m}$ and the air properties are $p_{1}=871.7 \mathrm{kPa}$ (abs), $T_{1}=529.0 \mathrm{~K}$, and $V_{1}=230.4 \mathrm{~m} / \mathrm{s}$. The air is expanded through a converging-diverging nozzle discharging into the atmosphere where $p_{\text {atm }}=101.3 \mathrm{kPa}$ (abs). At the nozzle exit (2), the nozzle diameter is $D_{2}=0.3221 \mathrm{~m}$ and the air properties are $T_{2}=475.7 \mathrm{~K}$ and $V_{2}=400.0 \mathrm{~m} / \mathrm{s}$.

a. Is the flow through the elbow-nozzle assembly adiabatic?
b. Determine the components of the force in the attachment flange required to hold the elbow-nozzle assembly in place. You may neglect the effects of gravity.

SOLUTION:

If the flow is adiabatic in going from 1 to 2 , then the energy equation will give:

$$
\begin{equation*}
T_{1}+\frac{V_{1}^{2}}{2 c_{P}}=T_{2}+\frac{V_{2}^{2}}{2 c_{P}} \tag{1}
\end{equation*}
$$

Using the given data:

$$
\begin{aligned}
& T_{1}=529.0 \mathrm{~K} \\
& V_{1}=230.4 \mathrm{~m} / \mathrm{s} \\
& c_{P}=1004 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
& T_{2}=475.7 \mathrm{~K} \\
& V_{2}=400.0 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow T_{1}+\frac{V_{1}^{2}}{2 c_{P}}=555.4 \mathrm{~K} \text { and } T_{2}+\frac{V_{2}^{2}}{2 c_{P}}=555.1 \mathrm{~K}
\end{aligned}
$$

Since the stagnation temperatures are approximately the same, the flow can be considered adiabatic in going from 1 to 2 .

To determine the force components, apply the linear momentum equation to the control volume shown below using the indicated fixed frame of reference.

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V=0 \text { (steady flow) } \\
& \int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=\left(V_{1}\right)\left(-\rho_{1} V_{1} \frac{\pi D_{1}^{2}}{4}\right)=-\rho_{1} V_{1}^{2} \frac{\pi D_{1}^{2}}{4} \\
& F_{B, x}=0 \\
& F_{S, x}=\left(p_{1}-p_{\mathrm{atm}}\right) \frac{\pi D_{1}^{2}}{4}+F_{x}
\end{aligned}
$$

Substitute and simplify.

$$
\begin{align*}
& -\rho_{1} V_{1}^{2} \frac{\pi D_{1}^{2}}{4}=\left(p_{1}-p_{\mathrm{atm}}\right) \frac{\pi D_{1}^{2}}{4}+F_{x} \\
& F_{x}=-\rho_{1} V_{1}^{2} \frac{\pi D_{1}^{2}}{4}-\left(p_{1}-p_{\mathrm{atm}}\right) \frac{\pi D_{1}^{2}}{4} \tag{2}
\end{align*}
$$

Using the given numerical data:

$$
\begin{aligned}
& \rho_{1}=p_{1} /\left(R T_{1}\right)=(871.7 \mathrm{kPa}) /[287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \cdot 529 \mathrm{~K}]=5.738 \mathrm{~kg} / \mathrm{m}^{3} \\
& V_{1}=230.4 \mathrm{~m} / \mathrm{s} \\
& D_{1}=0.1524 \mathrm{~m} \\
& p_{1}=871.7 \mathrm{kPa}(\mathrm{abs}) \\
& p_{\mathrm{atm}}=101.3 \mathrm{kPa}(\mathrm{abs}) \\
& \Rightarrow F_{x}=-19.60 \mathrm{kN}
\end{aligned}
$$

Also note that:

$$
\begin{equation*}
\dot{m}_{1}=\rho_{1} V_{1} \frac{\pi D_{1}^{2}}{4}=24.11 \mathrm{~kg} / \mathrm{s} \tag{3}
\end{equation*}
$$

Now consider the y-direction.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{y} \rho d V+\int_{\mathrm{CS}} u_{y}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, y}+F_{S, y}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} u_{y} \rho d V=0 \text { (steady flow) } \\
& \int_{\mathrm{CS}} u_{y}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=\left(-V_{2}\right)\left(\rho_{2} V_{2} \frac{\pi D_{2}^{2}}{4}\right)=-\rho_{2} V_{2}^{2} \frac{\pi D_{2}^{2}}{4} \\
& F_{B, y}=0 \\
& F_{S, y}=\left(p_{2}-p_{\mathrm{atm}}\right) \frac{\pi D_{2}^{2}}{4}+F_{y}
\end{aligned}
$$

Substitute and simplify.

$$
\begin{align*}
& -\rho_{2} V_{2}^{2} \frac{\pi D_{2}^{2}}{4}=\left(p_{2}-p_{\mathrm{atm}}\right) \frac{\pi D_{2}^{2}}{4}+F_{y} \\
& F_{y}=-\rho_{2} V_{2}^{2} \frac{\pi D_{2}^{2}}{4}-\left(p_{2}-p_{\mathrm{atm}}\right) \frac{\pi D_{2}^{2}}{4} \tag{4}
\end{align*}
$$

Note that from conservation of mass on the same control volume:

$$
\begin{equation*}
\dot{m}_{1}=\dot{m}_{2}=\rho_{2} V_{2} \frac{\pi D_{2}^{2}}{4} \tag{5}
\end{equation*}
$$

The pressure at point 2 will depend on whether the flow at that point is subsonic or supersonic.

$$
\begin{equation*}
\mathrm{Ma}_{2}=\frac{V_{2}}{c_{2}}=\frac{V_{2}}{\sqrt{\gamma R T_{2}}} \tag{6}
\end{equation*}
$$

Using the given data:

$$
\begin{aligned}
& V_{2}=400.0 \mathrm{~m} / \mathrm{s} \\
& \gamma=1.4 \\
& R=287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \\
& T_{2}=475.7 \mathrm{~K} \\
& \Rightarrow c_{2}=437.2 \mathrm{~m} / \mathrm{s} \Rightarrow \mathrm{Ma}_{2}=0.9148 \Rightarrow \text { The flow at point } 2 \text { is subsonic. } \Rightarrow \text { The pressure at point } 2 \text { is } \\
& \text { equal to atmospheric pressure, i.e., } p_{2}=101.3 \mathrm{kPa}(\mathrm{abs}) .
\end{aligned}
$$

Substituting the given numerical data in Eq. (4) gives $F_{y}=-9.644 \mathrm{kN}$.

