An air blower takes air from the atmosphere (100 kPa and 293 K) and ingests it through a smooth entry duct so that the losses are negligible. The cross-sectional area of the entry duct just upstream of the blower and that of the exit duct are both $0.01 \mathrm{~m}^{2}$.

The pressure ratio, p_{2} / p_{1}, across the blower is 1.05 and the exit pressure is equal to atmospheric pressure.
The air is assumed to behave isentropically upstream of the blower. Find:
a. the velocity of the air entering the blower, and
b. the mass flow rate of air through the system.

SOLUTION:

Apply conservation of energy between points 0 and 1 (refer to the figure below). Assume 1D, steady, isentropic $(\Rightarrow$ adiabatic $)$ flow. Also neglect potential energy changes since a gas is the working fluid.

The velocity far upstream is negligible $\left(V_{0} \approx 0\right)$ and $\dot{m}_{1}=\dot{m}_{0}$. Substitute and simplify.

$$
\begin{equation*}
h_{0}=h_{1}+\frac{1}{2} V_{1}^{2} \tag{2}
\end{equation*}
$$

Assume that the air behaves as a perfect gas $\left(\Delta h=c_{P} \Delta T\right)$ and solve for V_{1}.

$$
\begin{equation*}
V_{1}=\sqrt{2 c_{P}\left(T_{0}-T_{1}\right)} \tag{3}
\end{equation*}
$$

Express the temperature at point 1 in terms of a pressure ratio making use of the fact that the flow is isentropic.

$$
\begin{equation*}
\frac{T_{1}}{T_{0}}=\left(\frac{p_{1}}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}} \tag{4}
\end{equation*}
$$

The pressure rise across the blower is specified in the problem statement. Furthermore, the pressure at point 2 is equal to atmospheric pressure, i.e., $p_{2}=p_{0}$. Re-write Eq. (4) using this information.

$$
\begin{equation*}
\frac{T_{1}}{T_{0}}=\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1-\gamma}{\gamma}} \tag{5}
\end{equation*}
$$

Combine Eqs. (3) and (5).

$$
\begin{align*}
& V_{1}=\sqrt{2 c_{P}\left(T_{0}-T_{1}\right)}=\sqrt{2 c_{P} T_{0}\left(1-\frac{T_{1}}{T_{0}}\right)} \\
& \therefore V_{1}=\sqrt{2 c_{P} T_{0}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1-\gamma}{\gamma}}\right]} \tag{6}
\end{align*}
$$

Using the given numerical data:

$$
\begin{array}{ll}
c_{P} & =1004.5 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \text { (for air) } \\
\gamma & =1.4 \text { (for air) } \\
T_{0} & =293 \mathrm{~K} \\
p_{2} / p_{1} & =1.05 \\
\Rightarrow & V_{1}=90 \mathrm{~m} / \mathrm{s}
\end{array}
$$

The mass flow rate can be found from the conditions at point 1 :

$$
\begin{equation*}
\dot{m}=\rho_{1} V_{1} A_{1}=\left(\frac{p_{1}}{R T_{1}}\right) V_{1} A_{1} \tag{7}
\end{equation*}
$$

where the ideal gas law has been used. The pressure at point 1 can be found from the blower pressure ratio and the fact that p_{2} is equal to atmospheric pressure.

$$
\begin{equation*}
p_{1}=\left(\frac{p_{1}}{p_{2}}\right) p_{0} \tag{8}
\end{equation*}
$$

The temperature at point 1 can be found using Eq. (5). Using the given numerical data:

$$
\begin{array}{ll}
p_{0} & =100 \mathrm{kPa} \\
p_{2} / p_{1} & =1.05 \\
p_{1} & =95.2 \mathrm{kPa} \\
T_{0} & =293 \mathrm{~K} \\
T_{1} & =289 \mathrm{~K} \\
R & =287 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \text { (for air) } \\
V_{1} & =90 \mathrm{~m} / \mathrm{s} \\
A_{1} & =0.01 \mathrm{~m}^{2} \\
\Rightarrow & \dot{m} \\
\hline & =1.03 \mathrm{~kg} / \mathrm{s}
\end{array}
$$

