Consider a straight pipe filled with an incompressible liquid. The walls of the pipe are elastic so that the cross-sectional area, $A$, changes with the internal pressure, $p$, according to the relation:

$$
A=A_{0}+A_{1} p
$$

Thus, the pipe may have different cross-sectional areas at different axial positions depending on the internal pressure at each position. Find the speed of propagation, $c$, of a small pressure wave traveling along the pipe assuming $A_{0}$ and $A_{1}$ are known constants and that $A_{1} p$ is always small compared with $A_{0}$. Give your answer in terms of $A_{0}, A_{1}$, and the density, $\rho$, of the liquid.

## SOLUTION:

Apply conservation of mass and the linear momentum equation to the thin control volume shown below. Use a frame of reference that is fixed to the wave so that the flow appears steady.


Conservation of mass:

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0
$$

where

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=0 \quad \text { (steady flow) } \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho c A+\rho(c-d V)(A+d A) \tag{1}
\end{align*}
$$

Note that the area is a function of the pressure.

$$
\begin{equation*}
A=A_{0}+A_{1} p \quad \text { and } \quad A+d A=A_{0}+A_{1}(p+d p) \tag{2}
\end{equation*}
$$

Substitute and simplify.

$$
\begin{align*}
& -\rho c A+\rho(c-d V)(A+d A)=0 \\
& -\rho c\left(A_{0}+A_{1} p\right)+\rho(c-d V)\left[A_{0}+A_{1}(p+d p)\right]=0 \\
& -c A_{0}-c A_{1} p+c A_{0}+c A_{1}(p+d p)-A_{0} d V-d V A_{1}(p+d p)=0 \\
& c A_{1} d p-A_{0} d V-d V A_{1}(p+d p)=0 \\
& d V=\frac{c A_{1} d p}{A_{0}+A_{1}(p+d p)} \\
& \left.d V=\frac{c A_{1} d p}{A_{0}+A_{1} p} \quad \text { (Note that } d p \ll p .\right) \tag{3}
\end{align*}
$$

Now apply the linear momentum equation in the $x$-direction to the same control volume.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V+\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x}
$$

where

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V=0 \text { (steady flow) } \\
& \int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=m c-m(c-d V)=m d V=\rho c A d V=\rho c\left(A_{0}+A_{1} p\right) d V \tag{4}
\end{align*}
$$

$$
\begin{align*}
F_{S, x} & =-p A+(p+d p)(A+d A)-\left(p+\frac{1}{2} d p\right) d A=-p\left(A_{0}+A_{1} p\right)+(p+d p)\left[A_{0}+A_{1}(p+d p)\right]-p A_{1} d p \\
& =p A_{1} d p+d p A_{0}+p A_{1} d p-p A_{1} d p  \tag{5}\\
& =p A_{1} d p+d p A_{0}
\end{align*}
$$

$$
F_{B, x}=0 \text { (no body forces since the control volume is infinitesimally thin) }
$$

Substitute and simplify.

$$
\begin{align*}
& \rho c\left(A_{0}+A_{1} p\right) d V=p A_{1} d p+d p A_{0}=d p\left(A_{0}+A_{1} p\right) \\
& \rho c d V=d p \tag{6}
\end{align*}
$$

Substitute in for $d V$ using Eqn. (3).

$$
\begin{align*}
& \rho c\left(\frac{c A_{1} d p}{A_{0}+A_{1} p}\right)=d p \\
& c^{2}=\frac{A_{0}+A_{1} p}{\rho A_{1}} \tag{7}
\end{align*}
$$

Since $A_{1} p \ll A_{0}$ (given in the problem statement), Eqn. (8) becomes:

$$
\begin{equation*}
c^{2}=\frac{A_{0}}{\rho A_{1}} \tag{9}
\end{equation*}
$$

