A uniform block of steel (with a specific gravity of 7.85) will "float" at a mercury-water interface as shown in the figure. What is the ratio of the distances a and b ?

SOLUTION:

Balance forces in the vertical direction,

$$
\begin{equation*}
\sum F_{V}=0=-W_{\text {block }}+F_{B, H_{g}}+F_{B, H_{2} O}=-\rho_{\text {block }} V_{\text {block }} g+\rho_{H_{g}} V_{\substack{\text { block, } \\ \text { in } H_{g}}} g+\rho_{H_{2} O} V_{\substack{\text { block, } \\ \text { in } H_{2} O}} g, \tag{1}
\end{equation*}
$$

where the buoyant forces are equal to the weights of the displaced fluids.
Re-writing in terms of the lengths a and b and the block's cross-sectional area $A_{\text {block }}$,

$$
\begin{align*}
& -\rho_{\text {block }} A_{\text {block }}(a+b)+\rho_{H_{g}} A_{\text {block }} b+\rho_{H_{2} O} A_{\text {block }} a=0 \tag{2}\\
& -\rho_{\text {steel }}(a+b)+\rho_{H_{g}} b+\rho_{H_{2} O} a=0 \tag{3}\\
& -\rho_{H_{2} O} S G_{\text {steel }}\left(\frac{a}{b}+1\right)+\rho_{H_{2} O} S G_{H_{g}}+\rho_{H_{2} O} b \frac{a}{b}=0 \tag{4}\\
& -S G_{\text {steel }}\left(\frac{a}{b}+1\right)+S G_{H g}+\frac{a}{b}=0 \tag{5}\\
& \frac{a}{b}=\frac{S G_{H g}-S G_{\text {steel }}}{S G_{\text {steel }}-1} \tag{6}
\end{align*}
$$

Using the given data,

$$
\begin{aligned}
& S G_{H g}=13.6 \\
& S G_{\text {steel }}=7.85 \\
& \Rightarrow a / b=0.83
\end{aligned}
$$

Note that we could also solve this problem by balancing the block's weight with the pressure forces acting on the top and bottom block surfaces.

$$
\begin{equation*}
\sum F_{V}=0=-W_{\text {block }}+F_{p, H_{2} O}+F_{p, H_{g}}=-\rho_{\text {block }} A_{\text {block }}(a+b) g-\rho_{H_{2}} g(H-a) A_{\text {block }}+\left(\rho_{H_{2}} g H+\rho_{H_{g}} g b\right) A_{\text {block }}, \tag{7}
\end{equation*}
$$

where H is the depth of the water-mercury interface. Simplifying this equation gives,

$$
\begin{align*}
& -\rho_{\text {block }}(a+b)-\rho_{H_{2} O}(H-a)+\rho_{H_{2} O} H+\rho_{H_{g}} b=0, \tag{8}\\
& -\rho_{\text {block }}(a+b)+\rho_{H_{2} O} a+\rho_{H_{g}} b=0, \tag{9}
\end{align*}
$$

which is exactly the same as Eq. (3).

