A Venturi pump is used in the design of a carburetor, a device used to create a fuel-air mixture to be fed into the cylinder of an internal combustion engine. Simplified schematics of a carburetor are shown in the following figures.

Image from: http://hdabob.com/wpcontent/uploads/2009/10/carburetor.jpg

The air, which may reasonably be assumed to be incompressible, has a density ρ_{A} and the liquid fuel has density ρ_{F}. The fuel reservoir is located a distance H below the inlet port into the Venturi. The inlet air is at atmospheric pressure as is the free surface of the fuel reservoir. The air inlet cross-sectional area is A_{1} and the Venturi throat area is A_{2}. The fuel line cross-sectional area is A_{F}.

If the desired air-to-fuel mass flow rate ratio at the outlet of the carburetor is $R\left(=\dot{m}_{A} / \dot{m}_{F}\right)$, determine the required ratio A_{1} / A_{2} in terms of (a subset of) the air-to-fuel ratio R, air density ρ_{A}, the fuel density ρ_{F}, the inlet air mass flow rate \dot{m}_{A}, the acceleration due to gravity g, the height from the fuel reservoir to the Venturi throat H, the fuel pipe area A_{F}, and the air inlet area A_{1}.

SOLUTION:

Apply Bernoulli's equation from 1 to 2 .

$$
\begin{equation*}
\left(\frac{p}{\rho_{A} g}+\frac{V^{2}}{2 g}+z\right)_{2}=\left(\frac{p}{\rho_{A} g}+\frac{V^{2}}{2 g}+z\right)_{1} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{1}=p_{\mathrm{atm}} \text { and } p_{2}=? \tag{2}\\
& V_{1}=\frac{\dot{m}_{A}}{\rho_{A} A_{1}} \text { and } V_{2}=\frac{\dot{m}_{A}}{\rho_{A} A_{2}} \tag{3}
\end{align*}
$$

Δz is negligible compared to the other terms in B.E. since the fluid is a gas
Substitute and simplify.

$$
\begin{equation*}
p_{2}-p_{\mathrm{atm}}=\frac{1}{2} \frac{\dot{m}_{A}^{2}}{\rho_{A}}\left(\frac{1}{A_{1}^{2}}-\frac{1}{A_{2}^{2}}\right) \tag{5}
\end{equation*}
$$

Apply Bernoulli's equation from 3 to 4.

$$
\begin{equation*}
\left(\frac{p}{\rho_{F} g}+\frac{V^{2}}{2 g}+z\right)_{4}=\left(\frac{p}{\rho_{F} g}+\frac{V^{2}}{2 g}+z\right)_{3} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{3}=p_{\mathrm{atm}} \text { and } p_{4}=p_{2} \tag{7}\\
& V_{3} \approx 0 \text { and } V_{4}=\frac{\dot{m}_{F}}{\rho_{F} A_{F}} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\Delta z=z_{4}-z_{3}=H \tag{9}
\end{equation*}
$$

Substitute and simplify.

$$
\begin{equation*}
\underbrace{p_{4}}_{=p_{2}}-p_{\mathrm{atm}}=-\rho_{F} g H-\frac{1}{2} \frac{\dot{m}_{F}^{2}}{\rho_{F} A_{F}^{2}} \tag{10}
\end{equation*}
$$

Combine Eqs. (5) and (10) and solve for A_{1} / A_{2}.

$$
\begin{align*}
& \frac{1}{2} \frac{\dot{m}_{A}^{2}}{\rho_{A}}\left(\frac{1}{A_{1}^{2}}-\frac{1}{A_{2}^{2}}\right)=-\rho_{F} g H-\frac{1}{2} \frac{\dot{m}_{F}^{2}}{\rho_{F} A_{F}^{2}} \tag{11}\\
& \left(\frac{1}{A_{1}^{2}}-\frac{1}{A_{2}^{2}}\right)=-2 \rho_{A} \rho_{F} \frac{g H}{\dot{m}_{A}^{2}}-\frac{1}{A_{F}^{2}} \frac{\rho_{A}}{\rho_{F}} \frac{\dot{m}_{F}^{2}}{\dot{m}_{A}^{2}} \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \left(1-\frac{A_{1}^{2}}{A_{2}^{2}}\right)=-2 \rho_{A} \rho_{F} \frac{g H A_{1}^{2}}{\dot{m}_{A}^{2}}-\frac{A_{1}^{2}}{A_{F}^{2}} \frac{\rho_{A}}{\rho_{F}} \frac{\dot{m}_{F}^{2}}{\dot{m}_{A}^{2}} \tag{13}\\
& \left(\frac{A_{1}}{A_{2}}\right)^{2}=1+2 \rho_{A} \rho_{F} \frac{g H A_{1}^{2}}{\dot{m}_{A}^{2}}+\left(\frac{A_{1}}{A_{F}}\right)^{2}\left(\frac{\rho_{A}}{\rho_{F}}\right)\left(\frac{\dot{m}_{F}}{\dot{m}_{A}}\right)^{2} \tag{14}\\
& \frac{A_{1}}{A_{2}}=\sqrt{1+2 \rho_{A} \rho_{F} \frac{g H A_{1}^{2}}{\dot{m}_{A}^{2}}+\left(\frac{A_{1}}{A_{F}}\right)^{2}\left(\frac{\rho_{A}}{\rho_{F}}\right)\left(\frac{\dot{m}_{F}}{\dot{m}_{A}}\right)^{2}} \text { or } \frac{A_{1}}{A_{2}}=\sqrt{1+2 \rho_{A} \rho_{F} \frac{g H A_{1}^{2}}{\dot{m}_{A}^{2}}+\left(\frac{A_{1}}{A_{F}}\right)^{2}\left(\frac{\rho_{A}}{\rho_{F}}\right) \frac{1}{R^{2}}} \tag{15}
\end{align*}
$$

For a typical carburetor,

$$
\begin{aligned}
& \rho_{F}=770 \mathrm{~kg} / \mathrm{m}^{3} \text { (gasoline) } \\
& \rho_{A}=1.23 \mathrm{~kg} / \mathrm{m}^{3} \text { (air) } \\
& A_{1}=1.34 * 10^{-3} \mathrm{~m}^{2}\left(D_{1}=4.13 \mathrm{~cm}=15 / 8 \mathrm{in} .\right) \\
& A_{F}=1.70 * 10^{-6} \mathrm{~m}^{2}\left(D_{F}=1.47 \mathrm{~mm}=0.058 \text { in. }\right) \\
& R=14.7 \text { (ideal fuel to air ratio for gasoline) } \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& H=2.00 * 10^{-2} \mathrm{~m}(=2 \mathrm{~cm}) \\
& \dot{m}_{A}=0.290 \mathrm{~kg} / \mathrm{s}\left(500 \mathrm{cfm} @ 1.23 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \Rightarrow A_{1} / A_{2}=2.36 \Rightarrow D_{2}=2.69 \mathrm{~cm}
\end{aligned}
$$

