Water is siphoned from a large tank through a constant diameter hose as shown in the figure. Determine the maximum height of the hill, $H_{\text {hill }}$, over which the water can be siphoned without cavitation occurring. Assume that the vapor pressure of the water is p_{v}, the height of the water free surface in the tank is $H_{\text {tank }}$, and the vertical distance from the end of the hose to the base of the tank is $H_{\text {end }}$.

SOLUTION:

Apply Bernoulli's equation along a streamline from the tank free surface (point A) to the end of the tube (point C).

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{A}=\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{C} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{A}=p_{C}=p_{\mathrm{atm}} \\
& V_{A} \approx 0 \quad \text { (free surface of a large tank) } \\
& z_{A}-z_{C}=H_{\mathrm{tank}}+H_{\mathrm{end}}
\end{aligned}
$$

Solving Eqn. (1) for V_{C} gives:

$$
\begin{equation*}
V_{C}=\sqrt{2 g\left(H_{\mathrm{tank}}+H_{\mathrm{end}}\right)} \tag{2}
\end{equation*}
$$

Now apply Bernoulli's equation along a streamline from the tank free surface (point A) to the top of the tube (point B). Note that the velocity everywhere within the tube will be equal to V_{C} (from conservation of mass).

$$
\begin{equation*}
\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{A}=\left(\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{B} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{A}=p_{\mathrm{atm}} \\
& p_{B}=p_{\mathrm{v}}
\end{aligned}
$$

(From Eqn. (3) we see that the pressure at point B will decrease as $H_{\text {hill }}$ increases so we should use the smallest allowable pressure at point B to determine the maximum $H_{\text {hill }}$.)
$V_{A} \approx 0$ (free surface of a large tank)
$V_{B}=V_{C}=\sqrt{2 g\left(H_{\mathrm{tank}}+H_{\mathrm{end}}\right)} \quad$ (from conservation of mass)
$z_{A}-z_{B}=H_{\text {tank }}-H_{\text {hill }}$

Substituting into Eqn. (3) and solving for $H_{\text {hill }}$ gives:

$$
\begin{align*}
& \frac{p_{\mathrm{atm}}}{\rho g}+H_{\mathrm{tank}}-H_{\mathrm{hill}}=\frac{p_{v}}{\rho g}+H_{\mathrm{tank}}+H_{\mathrm{end}} \\
& H_{\mathrm{hill}}=\frac{p_{\mathrm{atm}}-p_{v}}{\rho g}-H_{\mathrm{end}} \tag{4}
\end{align*}
$$

