Water is siphoned from a large tank through a constant diameter hose as shown in the figure. Determine the maximum height of the hill, H_{hill} , over which the water can be siphoned without cavitation occurring. Assume that the vapor pressure of the water is p_v , the height of the water free surface in the tank is H_{tank} , and the vertical distance from the end of the hose to the base of the tank is H_{end} .

Apply Bernoulli's equation along a streamline from the tank free surface (point A) to the end of the tube (point C).

$$\left(\frac{p}{\rho g} + \frac{V^2}{2g} + z\right)_A = \left(\frac{p}{\rho g} + \frac{V^2}{2g} + z\right)_C \tag{1}$$

where

 $p_{A} = p_{C} = p_{\text{atm}}$ $V_{A} \approx 0 \quad \text{(free surface of a large tank)}$ $z_{A} - z_{C} = H_{\text{tank}} + H_{\text{end}}$ Solving Eqn. (1) for V_{C} gives: $V_{C} = \sqrt{2g(H_{\text{tank}} + H_{\text{end}})} \qquad (2)$

Now apply Bernoulli's equation along a streamline from the tank free surface (point A) to the top of the tube (point B). Note that the velocity everywhere within the tube will be equal to V_C (from conservation of mass).

$$\left(\frac{p}{\rho g} + \frac{V^2}{2g} + z\right)_A = \left(\frac{p}{\rho g} + \frac{V^2}{2g} + z\right)_B$$
(3)

where

$$p_A = p_{\text{atm}}$$

 $p_B = p_{\text{v}}$

(From Eqn. (3) we see that the pressure at point B will decrease as H_{hill} increases so we should use the smallest allowable pressure at point B to determine the maximum H_{hill} .)

 $V_A \approx 0$ (free surface of a large tank) $V_B = V_C = \sqrt{2g(H_{\text{tank}} + H_{\text{end}})}$ (from conservation of mass) $z_A - z_B = H_{\text{tank}} - H_{\text{hill}}$ Substituting into Eqn. (3) and solving for H_{hill} gives:

$$\frac{\underline{P_{\text{atm}}}}{\rho g} + H_{\text{tank}} - H_{\text{hill}} = \frac{\underline{P_{\nu}}}{\rho g} + H_{\text{tank}} + H_{\text{end}}$$

$$H_{\text{hill}} = \frac{\underline{P_{\text{atm}}} - \underline{P_{\nu}}}{\rho g} - H_{\text{end}}$$
(4)