Consider a Newtonian liquid film that is driven by a constant shear stress, $\tau_{y x}(y=h)=C$, applied by a plate to the top surface. Assume that the liquid film is flat, fully developed, and has a constant pressure gradient in the x-direction such that there is zero net flow rate $(Q=0)$.

Determine the velocity profile $u(y)$ and the pressure gradient $d p / d x$.
a. Use the continuity and Navier-Stokes equations to solve this problem.
b. Use a differential control volume and apply conservation of mass and the linear momentum equation to solve this problem.

SOLUTION:

Make the following assumptions about the flow:

1. The flow is planar.
$\Rightarrow \partial / \partial z(\cdots)=0, u_{z}=$ constant
2. The flow is steady.

$$
\Rightarrow \quad \partial / \partial t(\cdots)=0
$$

3. The flow is fully developed in the x-direction.
$\Rightarrow \partial u_{x} / \partial x=\partial u_{y} / \partial x=0$
4. Gravity acts in the $-y$ direction.
$\Rightarrow \quad g_{y}=-g ; g_{x}=g_{z}=0$

The continuity equation for an incompressible, planar flow is:

$$
\begin{equation*}
\underbrace{\frac{\partial u_{x}}{\partial x}}_{=0(\not \pm 3)}+\frac{\partial u_{y}}{\partial y}=0 \Rightarrow \frac{\partial u_{y}}{\partial y}=0 . \tag{1}
\end{equation*}
$$

Since the flow is also steady (\#2), fully developed (\#3), and planar (\#1), the y-velocity can be at most a constant. Since $u_{y}=0$ at the wall, then u_{y} everywhere is:

$$
\begin{equation*}
u_{y}=0 \quad(\text { Call this condition \#5. }) \tag{2}
\end{equation*}
$$

Now examine the x-momentum equation:

$$
\begin{align*}
& \rho(\underbrace{\frac{\partial u_{x}}{\partial t}}_{=0(\neq 2)}+u_{x} \underbrace{\frac{\partial u_{x}}{\partial x}}_{=0(\# 3)}+\underbrace{u_{y}}_{=0(\# 5)} \frac{\partial u_{x}}{\partial y})=-\frac{\partial p}{\partial x}+\mu(\underbrace{\frac{\partial^{2} u_{x}}{\partial x^{2}}}_{=0(\# 3)}+\frac{\partial^{2} u_{x}}{\partial y^{2}})+\rho \underbrace{g_{x}}_{=0(\neq 4)} \\
& 0=-\frac{\partial p}{\partial x}+\mu \frac{d^{2} u_{x}}{d y^{2}} \tag{3}
\end{align*}
$$

where the partial derivatives have been replaced by ordinary derivatives since u_{x} is not a function of x (\#3), $t(\# 1)$, or $z(\# 1)$.

Now consider the y-momentum equation,

$$
\begin{equation*}
\rho(\underbrace{\frac{\partial u_{y}}{\partial t}}_{=0(\# 2)}+u_{x} \underbrace{\frac{\partial u_{y}}{\partial x}}_{=0(\# 3)}+\underbrace{u_{y}}_{=0(\# 5)} \underbrace{\frac{\partial u_{y}}{\partial y}}_{=0(\# 5)})=-\frac{\partial p}{\partial y}+\mu(\underbrace{\frac{\partial^{2} u_{y}}{\partial x^{2}}}_{=0(\# 5)}+\underbrace{\frac{\partial^{2} u_{y}}{\partial y^{2}}}_{=0(\# 5)})+\rho \underbrace{g_{y}}_{=-g(\# 4)}, \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& 0=-\frac{\partial p}{\partial y}-\rho g \tag{5}\\
& \frac{\partial p}{\partial y}=-\rho g \tag{6}\\
& p(x, y)=\rho g(h-y)+f(x) . \tag{7}
\end{align*}
$$

Note that the pressure is not a function of the z direction since the flow is planar.
Now solve Eqn. (3) for the velocity profile.

$$
\begin{align*}
& \frac{d^{2} u_{x}}{d y^{2}}=\frac{1}{\mu} \frac{\partial p}{\partial x}=\frac{1}{\mu} \frac{d f}{d x} \tag{8}\\
& \frac{d u_{x}}{d y}=\frac{1}{\mu} \frac{d f}{d x} y+c_{1} \tag{9}\\
& u_{x}=\frac{1}{2 \mu} \frac{d f}{d x} y^{2}+c_{1} y+c_{2} \tag{10}
\end{align*}
$$

Apply boundary conditions to determine the unknown constant c_{1} and c_{2}.

$$
\begin{array}{ll}
\text { no-slip at } y=0 & \Rightarrow u_{x}(y=0)=0
\end{array} \begin{array}{ll}
\text { constant stress at } y=h \Rightarrow \tau_{y x}(y=h)=\mu \frac{d u_{x}}{d y}(y=h)=C \Rightarrow \mu\left(\frac{1}{\mu} \frac{d f}{d x} h+c_{1}\right)=C \\
& c_{1}=\frac{1}{\mu}\left(C-\frac{d f}{d x} h\right)
\end{array}
$$

Re-write the velocity profile,

$$
\begin{equation*}
u_{x}=\frac{1}{2 \mu} \frac{d f}{d x} y^{2}+\frac{1}{\mu}\left(C-\frac{d f}{d x} h\right) y, \tag{14}
\end{equation*}
$$

Since the flow has zero volumetric flow rate,

$$
\begin{align*}
& Q=\int_{y=0}^{y=h} u_{x} b d y=0 \tag{15}\\
& \int_{y=0}^{y=h}\left[\frac{1}{2 \mu} \frac{d f}{d x} y^{2}+\frac{1}{\mu}\left(C-\frac{d f}{d x} h\right) y\right] d y=0 \tag{16}\\
& \frac{1}{6 \mu} \frac{d f}{d x} h^{3}+\frac{1}{2 \mu}\left(C-\frac{d f}{d x} h\right) h^{2}=0 \tag{17}\\
& \frac{1}{6 \mu} \frac{d f}{d x} h^{3}+\frac{C h^{2}}{2 \mu}-\frac{1}{2 \mu} \frac{d f}{d x} h^{3}=0, \tag{18}\\
& \frac{-1}{3 \mu} \frac{d f}{d x} h^{3}+\frac{C h^{2}}{2 \mu}=0, \tag{19}\\
& \frac{d f}{d x}=\frac{3 C}{2 h} . \text { Note that } \frac{\partial p}{\partial x}=\frac{d f}{d x} \quad \text { (refer to Eq. (7)). } \tag{20}
\end{align*}
$$

Substitute back into Eq. (14) to get,

$$
\begin{align*}
& u_{x}=\frac{3}{4 \mu} \frac{C}{h} y^{2}+\frac{1}{\mu}\left(C-\frac{3}{2} C\right) y, \tag{21}\\
& u_{x}=\frac{3}{4 \mu} \frac{C}{h} y^{2}-\frac{1}{2 \mu} C y \tag{22}
\end{align*}
$$

Now solve the same problem, but using the fixed differential control volume shown in the following figure.

flow has width b into the page

Apply conservation of mass,

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{cv}} \rho d V+\int_{\mathrm{cs}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{23}
\end{equation*}
$$

where,

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{cV}} \rho d V=0 \text { (steady), } \tag{24}\\
& \int_{\mathrm{cs}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho u_{x}(b d y)+\rho\left(u_{x}+\frac{\partial u_{x}}{\partial x} d x\right)(b d y)-\rho u_{y}(b d x)+\rho\left(u_{y}+\frac{\partial u_{y}}{\partial y} d y\right)(b d x) \tag{25}
\end{align*}
$$

(Note: Assuming planar flow so the z component isn't shown.)

$$
\begin{equation*}
\int_{\mathrm{cs}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=\rho \frac{\partial u_{x}}{\partial x}(b d x d y)+\rho \frac{\partial u_{y}}{\partial y}(b d x d y) . \tag{26}
\end{equation*}
$$

Note that the flow is fully developed in the x direction, planar, and steady,

$$
\begin{equation*}
\int_{\mathrm{cs}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=\rho \frac{d u_{y}}{d y}(b d x d y) \tag{27}
\end{equation*}
$$

Substitute and simplify,

$$
\begin{equation*}
\rho \frac{d u_{y}}{d y}(b d x d y)=0 \Rightarrow \frac{d u_{y}}{d y}=0 . \tag{28}
\end{equation*}
$$

Using the same logic used to derive Eq. (2) gives $u_{y}=0$.
Now apply the linear momentum equation in the x direction,

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V+\int_{\mathrm{cs}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x} \tag{29}
\end{equation*}
$$

where,

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V=0 \text { (steady), } \tag{30}\\
& \int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\text {rel }} \cdot d \mathbf{A}\right)=0 \text { (fully developed in the } x \text {-direction; } u_{y}=0 \text {), } \tag{31}\\
& F_{B, x}=0 \tag{32}
\end{align*}
$$

$$
\begin{equation*}
F_{S, x}=p b d y-\left(p+\frac{\partial p}{\partial x} d x\right) b d y-\tau_{y x} b d x+\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} d y\right) b d x . \tag{33}
\end{equation*}
$$

Substitute and simplify,

$$
\begin{align*}
& 0=p b d y-\left(p+\frac{\partial p}{\partial x} d x\right) b d y-\tau_{y x} b d x+\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} d y\right) b d x \tag{34}\\
& 0=-\frac{\partial p}{\partial x} d x d y+\frac{\partial \tau_{y x}}{\partial y} d x d y \tag{35}\\
& \frac{d \tau_{y x}}{d y}=\frac{d p}{d x} \tag{36}
\end{align*}
$$

Note that,

$$
\begin{equation*}
\tau_{y x}=\mu(\frac{\partial u_{x}}{\partial y}+\underbrace{\frac{\partial u_{y}}{\partial x}}_{\substack{=\text { sincee } \\ u_{y}=0}}) \Rightarrow \frac{\partial \tau_{y x}}{\partial y}=\frac{\partial}{\partial y}\left(\mu \frac{\partial u_{x}}{\partial y}\right)=\mu \frac{\partial^{2} u_{x}}{\partial y^{2}} . \tag{37}
\end{equation*}
$$

Since the flow is steady, full developed in the x direction, and planar, Eq. (37) can be written in terms of an ordinary derivative,

$$
\frac{\partial \tau_{y x}}{\partial y}=\mu \frac{d^{2} u_{x}}{d y^{2}}
$$

Thus, Eq. (36) becomes,

$$
\begin{align*}
& \mu \frac{d^{2} u_{x}}{d y^{2}}=\frac{\partial p}{\partial x} \tag{38}\\
& \frac{d^{2} u_{x}}{d y^{2}}=\frac{1}{\mu} \frac{\partial p}{\partial x} . \tag{39}
\end{align*}
$$

This equation is the same as that found previously (Eq. (8)).
The pressure gradient in the y direction can be found by applying the linear momentum equation in the y direction to the same control volume,

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} u_{y} \rho d V+\int_{\mathrm{cs}} u_{y}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, y}+F_{S, y}, \tag{40}
\end{equation*}
$$

where,

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{cV}} u_{y} \rho d V=0\left(\text { steady } ; u_{y}=0\right), \tag{41}\\
& \int_{\mathrm{cs}} u_{y}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=0 \quad\left(u_{y}=0\right), \tag{42}\\
& F_{B, y}=-\rho g b d x d y \tag{43}
\end{align*}
$$

$$
\begin{equation*}
F_{s, y}=p b d x-\left(p+\frac{\partial p}{\partial y} d y\right) b d x-\tau_{x y} b d y+\left(\tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} d x\right) b d y . \tag{44}
\end{equation*}
$$

Substitute and simplify,

$$
\begin{equation*}
0=-\rho g b d x d y+p b d x-\left(p+\frac{\partial p}{\partial y} d y\right) b d x-\tau_{x y} b d y+\left(\tau_{x y}+\frac{\partial \tau_{x y}}{\partial x} d x\right) b d y \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{\partial p}{\partial y} d x d y+\frac{\partial \tau_{x y}}{\partial x} d x d y=\rho g d x d y \tag{46}
\end{equation*}
$$

Note that,

$$
\begin{equation*}
\tau_{x y}=\mu(\underbrace{\frac{\partial u_{y}}{\partial x}}_{\substack{=\text { sincee } \\ u_{y}=0}}+\frac{\partial u_{x}}{\partial y}) \Rightarrow \frac{\partial \tau_{y x}}{\partial x}=\frac{\partial}{\partial x}\left(\mu \frac{\partial u_{x}}{\partial y}\right)=\mu \frac{\partial}{\partial y}(\underbrace{\frac{\partial u_{x}}{\partial x}}_{\substack{\text { fos since } \\ \text { fully-deloped } \\ \text { inx direction }}})=0, \tag{47}
\end{equation*}
$$

where the order of the partial derivative have been flipped near the end of the equation.
Equation (46) now becomes,

$$
\begin{align*}
& -\frac{\partial p}{\partial y} d x d y=\rho g d x d y \tag{48}\\
& \frac{\partial p}{\partial y}=-\rho g \tag{49}
\end{align*}
$$

which is precisely the same as Eq. (6)

