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A viscous, incompressible fluid flows between the two infinite, vertical, parallel plates shown in the figure.  
Determine, by use of the Navier-Stokes equations, an expression for the pressure gradient in the direction 
of flow.  Express your answer in terms of the mean velocity.  Assume that the flow is steady and fully 
developed in the x direction. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Make the following assumptions about the flow: 

1. The flow is planar.   ⇒ 
   
∂
∂z !( ) = 0,uz = constant  

2. The flow is steady. ⇒ 
   
∂
∂t !( ) = 0  

3. The flow is fully developed in the x-direction. ⇒ 0yx
uu

x x
∂∂ = =∂ ∂  

4. Gravity acts in the –x direction. ⇒ ; 0x y zg g g g= − = =  
 

The continuity equation for an incompressible, planar flow is: 

   

∂ux

∂x
=0 #3( )
!

+
∂uy

∂y
= 0   ⇒  0yu

y
∂

=
∂

    (1) 

Since the flow is also steady (#2), fully developed (#3), and planar (#1), the y-velocity can be at most a 
constant.  Since uy = 0 at the wall, then uy everywhere is: 

0yu =   (Call this condition #5.) (2) 
 

Now examine the x-momentum equation: 

   

ρ
∂ux

∂t
=0 # 2( )
!

+ ux

∂ux

∂x
=0 #3( )
!

+ uy

=0 #5( )
!

∂ux

∂y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= − ∂p

∂x
+ µ

∂2ux

∂x2

=0 #3( )
!

+
∂2ux

∂y2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ ρ gx

=−g # 4( )
!  

2

20 xd udp
g

dx dy
µ ρ= − + −   (3) 

where the partial derivatives have been replaced by ordinary derivatives since ux is not a function of x (#3), 
t (#2), or z (#1).  In addition, consideration of the y and z-momentum equations will show that p is not a 
function of either x or y and since the flow is fully developed, dp/dx = constant. 
 
Now solve Eq. (3) for the velocity profile, 

2

2

1
constantxd u dp

g
dxdy

ρ α
µ µ

= + = =  (4) 

1
xdu y c

dx
α= +  (5) 

21
1 22xu y c y cα= + +  (6) 

direction 
of flow 

g 

h 

x 

y 
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Apply boundary conditions to determine the unknown constant c1 and c2. 
no-slip at y = -1/2h ⇒ ( )1

2 0xu y h= − =    ⇒ 21 1
1 28 20 h c h cα= − +  (7) 

no-slip at y = 1/2h ⇒ ( )1
2 0xu y h= =  ⇒ 21 1

1 28 20 h c h cα= + +  (8) 

Substract Eq. (8) from Eq. (7) to determine c1. 

1 0c =   (Note that we could have also determined this from symmetry and Eq. (5).) (9) 
The other constant, c2, is thus: 

21
2 8c hα= −  (10) 

and the velocity profile is: 
2

21 2 1
8x

y
u h

h
α

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 (11) 

where α is given in Eq. (4) 
2

21 1 2 1
8x

dp y
u g h

dx h
ρ

µ µ
⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

 (12) 

 
The average velocity is found from the volumetric flow rate, Q. 

1 1
2 2

1 1
2 2

2
21 1 2 1

8

y h y h

x
y h y h

dp y
Q u dy g h dy

dx h
ρ

µ µ

= =

=− =−

⎡ ⎤⎛ ⎞ ⎛ ⎞= = + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦
∫ ∫  (13) 

1
2

1
2

3
2

2

1 1 4
8 3

y h

y h

dp y
Q g h y

dx h
ρ

µ µ

=

=−

⎡ ⎤⎛ ⎞= + −⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

 (14) 

31 1
12

dp
Q g h

dx
ρ

µ µ
⎛ ⎞∴ = − +⎜ ⎟
⎝ ⎠

 (15) 

 

xu h Q=  (16) 

21 1
12x

dp
u g h

dx
ρ

µ µ
⎛ ⎞∴ = − +⎜ ⎟
⎝ ⎠

 (17) 

Re-arrange to solve for the pressure gradient in terms of the average velocity. 

2

12 xudp
g

dx h
µ ρ⎛ ⎞= − +⎜ ⎟⎝ ⎠

 (18) 
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Now choose a differential control volume and apply conservation of mass and the linear momentum 
equation to solve the problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

!!!
d
dt

ρdV
CV
∫ + ρurel ⋅dA

CS
∫ =0 , (19) 

where, 

!!
d
dt

ρdV
CV
∫ =0   (steady flow), (20) 

!!!
ρurel ⋅dA

CS
∫ = −ρuxdy + ρ ux +

∂ux
∂x

dx
⎛

⎝⎜
⎞

⎠⎟
dy − ρuydx + ρ uy +

∂uy
∂ y

dy
⎛

⎝
⎜

⎞

⎠
⎟ dx , (21) 

!!!
ρurel ⋅dA

CS
∫ = ρ

∂ux
∂x

dxdy + ρ
∂uy
∂ y

dydx ,  

assuming unit depth and planar flow. 
Substitute and simplify, 

!!
ρ
∂ux
∂x

dxdy + ρ
∂uy
∂ y

dydx =0 , (22) 

!! 

∂ux
∂x

=0!since
the!flow!is!FD

in!the!x !direction

!
+
∂uy
∂ y

=0 , (23) 

which is the same as Eq. (1) 
 
Now consider the linear momentum equation in the x direction using the same differential control volume, 

!!!
d
dt

uxρdV
CV
∫ + ux ρurel ⋅dA( )

CS
∫ = FB ,x +FS ,x , (24) 

where, 

!!
d
dt

uxρdV
CV
∫ =0   (steady flow), (25) 

!!!
ux ρurel ⋅dA( )

CS
∫ =0  (the flow is fully developed in the x direction, planar, and uy = 0), (26) 

!!FB ,x = −ρgdxdy , (27) 

!!
FS ,x = pdy − p+ ∂p

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
dy −τ yxdx + τ yx +

∂τ yx

∂ y
dy

⎛

⎝
⎜

⎞

⎠
⎟ dx . (28) 

direction 
of flow 

g 

h 

x 

y 

dx 
dy 

!
p+ ∂p

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
dy   

!pdy   
!
τ yx +

∂τ yx

∂ y
dy

⎛

⎝
⎜

⎞

⎠
⎟ dx   

!
τ yxdx   

dx 

dy 
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Substitute and simplify.  

!!
0= −ρgdxdy + pdy − p+ ∂p

∂x
dx

⎛
⎝⎜

⎞
⎠⎟
dy −τ yxdx + τ yx +

∂τ yx

∂ y
dy

⎛

⎝
⎜

⎞

⎠
⎟ dx , (29) 

 
!!
0= −ρg− ∂p

∂x
+
∂τ yx

∂ y
. (30) 

Note that for a Newtonian fluid, 

 

!! 

∂τ yx

∂ y
= ∂
∂ y

µ
∂ux
∂ y

+
∂uy
∂x

=0!since
uy=0

!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= µ
∂2ux
∂ y2

. (31) 

Substitute this expression into Eq. (30), 

!!
0= −ρg− ∂p

∂x
+ µ

∂2ux
∂ y2

. (32) 

Since the flow is fully developed, steady, and planar, the last term in Eq. (31) may be written in terms of 
ordinary derivatives.  In addition, apply the linear momentum equation in the y and z directions would show 
that the pressure gradient in both of those directions is zero.  Hence, Eq. (32) becomes, 

!!
0= −ρg− dp

dx
+ µ

d2ux
dy2

. (33) 

This equation is exactly the same as Eq. (4) 

 925 


