An incompressible fluid flows between two porous, parallel flat plates as shown:

An identical fluid is injected at a constant speed V through the bottom plate and simultaneously extracted from the upper plate at the same velocity. Assume the flow to be steady, fully-developed, the pressure gradient in the x-direction is a constant, and neglect body forces. Determine appropriate expressions for the x and y velocity components.

SOLUTION:

First, make several assumptions regarding the flow.

1. The flow is steady.

$$
\begin{aligned}
& \Rightarrow \partial / \partial t(\cdots)=0 \\
& \Rightarrow \partial u_{x} / \partial x=\partial u_{y} / \partial x=\partial u_{z} / \partial x=0 \\
& \Rightarrow \quad u_{z}=\text { constant, } \partial / \partial z(\cdots)=0 \\
& \Rightarrow \partial p / \partial x=\text { constant } \\
& \Rightarrow \quad g_{x}=g_{y}=g_{z}=0
\end{aligned}
$$

2. The flow is fully developed in the x-direction.
3. The flow is planar.
4. The pressure gradient in the x-direction is constant.
5. Body forces can be neglected.
6. The fluid is incompressible and Newtonian.

First examine the continuity equation.

$$
\underbrace{\frac{\partial u_{x}}{\partial x}}_{=0(\# 2)}+\frac{\partial u_{y}}{\partial y}=0 \Rightarrow \frac{\partial u_{y}}{\partial y}=0
$$

Since the y-velocity doesn't vary in the x or z-directions either (assumptions \#2 and \#3, respectively), the y velocity must be a constant, i.e. $u_{y}=$ constant. Since the y-velocity at the lower plate is $u_{y}=V$, we must have everywhere:

$$
\begin{equation*}
u_{y}=V \quad(\text { Call this condition \#7.) } \tag{1}
\end{equation*}
$$

Now examine the Navier-Stokes equation in the x-direction.

$$
\begin{align*}
& \rho(\underbrace{\frac{\partial u_{x}}{\partial t}}_{=0(\# 1)}+u_{x} \underbrace{\frac{\partial u_{x}}{\partial x}}_{=0(\# 2)}+\underbrace{u_{y}}_{=V(\# 7)} \frac{\partial u_{x}}{\partial y})=-\frac{\partial p}{\partial x}+\mu(\underbrace{\frac{\partial^{2} u_{x}}{\partial x^{2}}}_{=0(\# 2)}+\frac{\partial^{2} u_{x}}{\partial y^{2}})+\rho \underbrace{g_{x}}_{=0(\# 5)} \\
& \rho V \frac{d u_{x}}{d y}=-\frac{\partial p}{\partial x}+\mu \frac{d^{2} u_{x}}{d y^{2}} \tag{2}
\end{align*}
$$

Let $z=d u_{x} / d y$ so that Eqn. (2) becomes:

$$
\begin{align*}
& \rho V z=-\frac{\partial p}{\partial x}+\mu \frac{d z}{d y} \\
& \int \frac{\mu d z}{\frac{\partial p}{\partial x}+\rho V z}=\int d y \\
& \frac{\mu}{\rho V} \ln \left(\frac{\partial p}{\partial x}+\rho V z\right)=y+c \quad \text { (where } c \text { is a constant) } \\
& \frac{\partial p}{\partial x}+\rho V \frac{d u_{x}}{d y}=c \exp \left(\frac{\rho V y}{\mu}\right) \\
& \frac{d u_{x}}{d y}=c \exp \left(\frac{\rho V y}{\mu}\right)-\frac{1}{\rho V} \frac{\partial p}{\partial x} \\
& \int d u_{x}=c \int \exp \left(\frac{\rho V y}{\mu}\right) d y-\frac{1}{\rho V} \frac{\partial p}{\partial x} \int d y \\
& u_{x}=c_{1} \exp \left(\frac{\rho V y}{\mu}\right)-\frac{1}{\rho V} \frac{\partial p}{\partial x} y+c_{2} \quad \text { (where } c_{1} \text { and } c_{2} \text { are constants) } \tag{3}
\end{align*}
$$

Apply boundary conditions.

$$
\begin{array}{ll}
\begin{array}{l}
\text { no-slip at } y=0 \\
\text { no-slip at } y=h
\end{array} \quad \Rightarrow & u_{x}(y=0)=0 \quad \Rightarrow c_{2}=-c_{1} \\
\Rightarrow & u_{x}(y=h)=0 \\
\Rightarrow & 0=c_{1} \exp \left(\frac{\rho V h}{\mu}\right)-\frac{1}{\rho V} \frac{\partial p}{\partial x} h+c_{2} \\
& 0=c_{1} \exp \left(\frac{\rho V h}{\mu}\right)-\frac{1}{\rho V} \frac{\partial p}{\partial x} h-c_{1} \\
& c_{1}\left[\exp \left(\frac{\rho V h}{\mu}\right)-1\right]=\frac{1}{\rho V} \frac{\partial p}{\partial x} h \\
& c_{1}=\frac{\frac{h}{\rho V}\left(-\frac{\partial p}{\partial x}\right)}{1-\exp \left(\frac{\rho V h}{\mu}\right)}
\end{array}
$$

Hence,

$$
\begin{aligned}
u_{x} & =c_{1} \exp \left(\frac{\rho V y}{\mu}\right)-\frac{1}{\rho V} \frac{\partial p}{\partial x} y-c_{1} \\
& =c_{1}\left[\exp \left(\frac{\rho V y}{\mu}\right)-1\right]-\frac{y}{\rho V} \frac{\partial p}{\partial x} \\
u_{x} & =\frac{h}{\rho V}\left(\frac{\partial p}{\partial x}\right)\left[\left\{\left[\frac{1-\exp \left(\frac{\rho V y}{\mu}\right)}{1-\exp \left(\frac{\rho V h}{\mu}\right)}\right]-\frac{y}{h}\right\}\right.
\end{aligned}
$$

