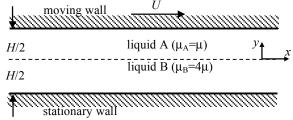
ns_08

Two immiscible viscous liquids are introduced into a Couette flow device so that they form two layers of equal height as shown:



The dynamic viscosity, μ , of liquid A is one quarter that of liquid B. The upper plate is moved at a constant velocity, U, while the bottom plate remains stationary.

- a. Determine the velocity of the interface between the two liquids.
- b. Determine the "apparent viscosity" of the mixture as seen by an experimenter who believes that only one liquid is in the device.

SOLUTION:

Make several assumptions regarding the flow in each region:

1.	planar flow	\Rightarrow	$\partial / \partial z(\cdots) = 0, u_z = 0$
2.	steady flow	\Rightarrow	$\partial / \partial t (\cdots) = 0$
3.	fully-developed flow in the <i>x</i> -direction	\Rightarrow	$\frac{\partial u_x}{\partial x} = \frac{\partial u_y}{\partial x} = 0$
4.	no pressure gradient in the <i>x</i> -direction		$\frac{\partial p}{\partial x} = 0$
5.	no body forces	\Rightarrow	$g_x = g_y = g_z = 0$

First examine the continuity equation.

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = 0 \implies \frac{\partial u_y}{\partial y} = 0$$

This result combined with assumptions 1 and 3 indicate that $u_y = \text{constant}$. Since there is no flow through the walls, $u_y = 0$ everywhere (call this condition #6).

$$\rho \left[\underbrace{\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + \underbrace{u_y}_{=0(\#3)} \frac{\partial u_x}{\partial y}}_{=0(\#4)} \right] = -\underbrace{\frac{\partial p}{\partial x}}_{=0(\#4)} + \mu \left(\underbrace{\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2}}_{=0(\#3)} \right) + \rho \underbrace{g_x}_{=0(\#5)}$$

$$\frac{d^2 u_x}{dy^2} = 0 \quad \text{(Note that } u_x = u_x(y) \text{ from assumptions 1, 2, and 3.)} \tag{1}$$

Integrating twice with respect to y gives:

$$\frac{du_x}{dy} = c_1 \tag{2}$$

$$u_x = c_1 y + c_2 \tag{3}$$

Note that Eqns. (1) - (3) are valid for both fluids (A and B).

Now apply boundary conditions for each fluid.

Fluid B:

no-slip at
$$y = 0 \implies u_{xB} (y = 0) = V_i \Rightarrow c_{2B} = V_i$$
 (where V_i is the interface velocity)
no-slip at $y = -H/2 \implies u_{xB} (y = -\frac{H}{2}) = 0 \Rightarrow c_{1B} = \frac{2V_i}{H}$
 $\therefore u_{xB} = V_i \left[2 \left(\frac{y}{H} \right) + 1 \right]$ (4)

Fluid A:

no-slip at y = 0 \Rightarrow $u_{xA}(y=0) = V_i \Rightarrow c_{2A} = V_i$ (where V_i is the interface velocity)

no-slip at
$$y = H/2 \implies u_{xA} \left(y = \frac{H}{2} \right) = U \Rightarrow c_{1A} = \frac{2(U - V_i)}{H}$$

$$\therefore u_{xA} = 2\left(U - V_i\right) \left(\frac{y}{H}\right) + V_i \tag{5}$$

Also note that the shear stress is continuous at the interface. $d_{1} = \frac{1}{2} \frac{1}$

$$\mu_{A} \frac{du_{xA}}{dy}\Big|_{y=0} = \mu_{B} \frac{du_{xB}}{dy}\Big|_{y=0}$$

$$\mu \frac{2(U-V_{i})}{H} = 4\mu \frac{2V_{i}}{H}$$

$$\therefore V_{i} = \frac{1}{5}U$$
(6)

To determine the "apparent viscosity", μ^* , note that if there was only a single fluid between the two plates with viscosity, μ^* , the shear stress exerted by the upper plate would be:

$$\tau = \mu^* \left(\frac{U}{H}\right) \tag{7}$$

With the two fluids, the shear stress exerted by the upper plate on fluid A is:

$$\tau = \mu \frac{2(U - V_i)}{H} = \mu \frac{2(U - \frac{1}{5}U)}{H} = \frac{8}{5}\mu \left(\frac{U}{H}\right)$$
(8)

Equating Eqns. (7) and (8) shows that the apparent viscosity is:

$$\mu^* = \frac{8}{5}\mu \tag{9}$$