A water tank has an orifice in the bottom of the tank:

The height, h, of water in the tank is kept constant by a supply of water which is not shown. A jet of water emerges from the orifice; the cross-sectional area of the jet, $A(y)$, is a function of the vertical distance, y. Neglecting viscous effects and surface tension, find an expression for $A(y)$ in terms of $A(0), h$, and y.

SOLUTION:

Apply conservation of mass to the following CV:

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=0 \text { (The flow is steady.) } \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho V_{0} A_{0}+\rho V_{2} A_{2}
\end{aligned}
$$

Substitute and simplify:

$$
\begin{equation*}
V_{2}=V_{0} \frac{A_{0}}{A_{2}} \tag{1}
\end{equation*}
$$

Now apply Bernoulli's equation from point 1 to point 0 and from point 1 to point 2 :

$$
\left(p+\frac{1}{2} \rho V^{2}-\rho g y\right)_{1}=\left(p+\frac{1}{2} \rho V^{2}-\rho g y\right)_{0}=\left(p+\frac{1}{2} \rho V^{2}-\rho g y\right)_{2}
$$

where
$p_{1}=p_{0}=p_{2}=p_{\mathrm{atm}}$ (These points are all at free surfaces.)
$V_{1}=0$ and V_{0} and V_{2} are related through Eqn. (1).
$y_{1}=-h, y_{0}=0, y_{2}=y$

Substitute and simplify:

$$
\begin{aligned}
& \rho g h=\frac{1}{2} \rho V_{0}^{2}=\frac{1}{2} \rho V_{2}^{2}-\rho g y \\
& \rho g h=\frac{1}{2} \rho V_{0}^{2}=\frac{1}{2} \rho V_{0}^{2}\left(\frac{A_{0}}{A_{2}}\right)^{2}-\rho g y
\end{aligned}
$$

The first two equations in the previous expression state that:

$$
\begin{equation*}
V_{0}=\sqrt{2 g h} \tag{2}
\end{equation*}
$$

Eqn. (2) combined with the second two equations gives:

$$
\begin{aligned}
& \left(\frac{A_{0}}{A_{2}}\right)^{2}=1+\frac{\rho g y}{\frac{1}{2} \rho V_{0}^{2}} \\
& \left(\frac{A_{0}}{A_{2}}\right)^{2}=1+\frac{\rho g y}{\rho g h}=1+\frac{y}{h} \\
& \frac{A_{2}}{A_{0}}=\frac{1}{\sqrt{1+\frac{y}{h}}}
\end{aligned}
$$

