Air at standard conditions enters the compressor shown in the figure below at a rate of $10 \mathrm{ft}^{3} / \mathrm{s}$. The air leaves the tank through a 1.2 in . diameter pipe with a density of $0.0035 \mathrm{slug} / \mathrm{ft}^{3}$ and a uniform speed of 700 ft / s. Determine the average time rate of change of air density within the tank.

SOLUTION:

Apply conservation of mass to a control volume surrounding the tank as shown in the figure below.

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d}{d t}\left(\rho_{t} V_{t}\right)=V_{t} \frac{d \rho_{t}}{d t} \tag{2}\\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho_{\mathrm{i}} Q_{\mathrm{i}}+\rho_{\mathrm{o}} U_{\mathrm{o}} A_{\mathrm{o}} \tag{3}
\end{align*}
$$

Substitute and solve for the rate at which the air density within the tank is changing.

$$
\begin{align*}
& V_{t} \frac{d \rho_{t}}{d t}-\rho_{\mathrm{i}} Q_{\mathrm{i}}+\rho_{\mathrm{o}} U_{\mathrm{o}} A_{\mathrm{o}}=0 \tag{4}\\
& \frac{d \rho_{t}}{d t}=\frac{\rho_{\mathrm{i}} Q_{\mathrm{i}}-\rho_{\mathrm{o}} U_{\mathrm{o}} A_{\mathrm{o}}}{V_{t}} \tag{5}
\end{align*}
$$

Using the given data:

$$
\begin{array}{ll}
\rho_{\mathrm{i}} & =2.38^{*} 10^{-3} \mathrm{slug} / \mathrm{ft}^{3} \\
Q_{\mathrm{i}} & =10 \mathrm{ft}^{3} / \mathrm{s} \\
\rho_{\mathrm{o}} & =3.5^{*} 10^{-3} \mathrm{slug} / \mathrm{ft}^{3} \\
U_{\mathrm{o}} & =700 \mathrm{ft} / \mathrm{s} \\
A_{\mathrm{o}} & =\pi / 4 *(1.2 \mathrm{in} \cdot 1 \mathrm{ft} / 12 \mathrm{in} .)^{2}=7.85^{*} 10^{-3} \mathrm{ft}^{2} \\
V_{t} & =20 \mathrm{ft}^{3} \\
\therefore \frac{d \rho_{t}}{d t} & =2.28 * 10^{-4} \mathrm{slug} / \mathrm{ft}^{3} / \mathrm{s}
\end{array}
$$

