The (symmetric) V-shaped container shown in the figure has width, b, into the page and is filled from the inlet pipe at volume flow rate, Q. Derive expressions for:
a. the rate of change of the surface height, $d h / d t$
b. the time required for the surface to rise from h_{1} to h_{2}.

SOLUTION:

Apply conservation of mass to the deformable control volume shown in the figure below.

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d}{d t}\left(\rho 2 \cdot \frac{1}{2} h \frac{h}{\tan \theta} \cdot b\right)=\frac{\rho b}{\tan \theta} \frac{d}{d t}\left(h^{2}\right)=\frac{2 \rho b h}{\tan \theta} \frac{d h}{d t} \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho Q
\end{aligned}
$$

Substitute and simplify.

$$
\begin{align*}
& \frac{2 \rho b h}{\tan \theta} \frac{d h}{d t}-\rho Q=0 \tag{1}\\
& \frac{d h}{d t}=\frac{\tan \theta}{2 h b} Q
\end{align*}
$$

Solve the differential equation to determine the time required for a specified change in the liquid level.

$$
\begin{align*}
& \frac{d h}{d t}=\frac{\tan \theta}{2 h b} Q \\
& \int_{h=h_{1}}^{h=h_{2}} h d h=\frac{\tan \theta}{2 b} Q \int_{t=t_{1}}^{t=t_{2}} d t \\
& \frac{1}{2}\left(h_{2}^{2}-h_{1}^{2}\right)=\frac{\tan \theta}{2 b} Q\left(t_{2}-t_{1}\right) \\
& t_{2}-t_{1}=\frac{b\left(h_{2}^{2}-h_{1}^{2}\right)}{Q \tan \theta} \tag{2}
\end{align*}
$$

