Water enters a rigid, sealed, cylindrical tank at a steady rate of $100 \mathrm{~L} / \mathrm{hr}$ and forces gasoline (with a specific gravity of 0.68) out as is indicated in the drawing. The tank has a total volume of 1000 L . What is the time rate of change of the mass of gasoline contained in the tank?

SOLUTION:

Apply conservation of mass to the control volume shown below.

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d}{d t}\left(M_{\mathrm{gas}}+M_{\mathrm{H} 20}\right)=\frac{d M_{\mathrm{gas}}}{d t}+\rho_{\mathrm{H} 20} \frac{d V_{\mathrm{H} 20}}{d t} \quad \text { (Gas and water are incompressible.) } \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=\rho_{\mathrm{gas}} Q_{\mathrm{gas}}-\rho_{\mathrm{H} 20} Q_{\mathrm{H} 20}
\end{aligned}
$$

Substitute and simplify.

$$
\begin{align*}
& \frac{d M_{\mathrm{gas}}}{d t}+\rho_{\mathrm{H} 20} \frac{d V_{\mathrm{H} 20}}{d t}+\rho_{\mathrm{gas}} Q_{\mathrm{gas}}-\rho_{\mathrm{H} 20} Q_{\mathrm{H} 20}=0 \\
& \frac{d M_{\mathrm{gas}}}{d t}=\rho_{\mathrm{H} 20}\left(Q_{\mathrm{H} 20}-\frac{d V_{\mathrm{H} 20}}{d t}\right)-\rho_{\mathrm{gas}} Q_{\mathrm{gas}} \tag{2}
\end{align*}
$$

Note that the time rate of change of the water volume, $d V_{\mathrm{H} 20} / d t$, is equal to the water's volumetric flow rate, $Q_{\mathrm{H} 20}$. Furthermore, since both liquids are incompressible and the total tank volume remains constant, $Q_{\text {gas }}$ $=Q_{\mathrm{H} 20}$. Utilizing these facts to simply Eqn. (2) gives:

$$
\begin{equation*}
\frac{d M_{\mathrm{gas}}}{d t}=-\rho_{\mathrm{gas}} Q_{\mathrm{H} 20}=-S G_{\mathrm{gas}} \rho_{\mathrm{H} 20} Q_{\mathrm{H} 20} \tag{3}
\end{equation*}
$$

Using the given parameters:

$$
\begin{aligned}
& S G_{\text {gas }}=0.68 \\
& \rho_{\mathrm{H} 20}=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& Q_{\mathrm{H} 20}=100 \mathrm{~L} / \mathrm{hr}=0.1 \mathrm{~m}^{3} / \mathrm{hr} \\
& \Rightarrow d M_{\mathrm{gas}} / d t \quad=-68 \mathrm{~kg} / \mathrm{hr}=0.019 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

