A box with a hole of area, A, moves to the right with velocity, u_{box}, through an incompressible fluid as shown in the figure. If the fluid has a velocity of $u_{\text {fluid }}$ which is at an angle, θ, to the vertical, determine how long it will take to fill the box with fluid. Assume the box volume is $V_{\text {box }}$ and that it is initially empty.

volume, $V_{\text {box }}$

SOLUTION:

Apply conservation of mass to a control volume fixed to the interior of the box. Change our frame of reference so the box appears stationary.

volume, $V_{\text {box }}$

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\text {rel }} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d\left(\rho V_{\mathrm{CV}}\right)}{d t}=\rho \frac{d V_{\mathrm{CV}}}{d t} \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=\rho\left[\begin{array}{c}
\left.\left(-u_{\mathrm{box}} \hat{\mathbf{i}}-u_{\mathrm{fluid}} \sin \theta \hat{\mathbf{i}}-u_{\mathrm{fluid}} \cos \theta \hat{\mathbf{j}}\right) \cdot \begin{array}{r}
A \hat{\mathbf{i}} \\
=d \mathbf{A}
\end{array}\right]=-\rho\left(u_{\mathrm{box}}+u_{\mathrm{fluid}} \sin \theta\right) A \\
=\mathbf{u}_{\mathrm{rel}}
\end{array}\right.
\end{aligned}
$$

Substitute and simplify.

$$
\begin{align*}
& \rho \frac{d V_{\mathrm{CV}}}{d t}-\rho\left(u_{\mathrm{box}}+u_{\mathrm{fluid}} \sin \theta\right) A=0 \\
& \frac{d V_{\mathrm{CV}}}{d t}=\left(u_{\mathrm{box}}+u_{\mathrm{fluid}} \sin \theta\right) A \\
& V_{\mathrm{CV}}=V_{\mathrm{CV}} \\
& \int_{\mathrm{CV}} d V_{\mathrm{CV}}=\left(u_{\mathrm{box}}+u_{\mathrm{fluid}} \sin \theta\right) A \int_{t=0}^{t=T} d t \text { (Note that } u_{\mathrm{box}}, u_{\text {fluid }}, \theta, \text { and } A \text { don't change with time.) } \\
& V_{\mathrm{CV}}=\left(u_{\mathrm{box}}+u_{\mathrm{fluid}} \sin \theta\right) A T \tag{2}\\
& \therefore T=\frac{V_{\mathrm{CV}}}{\left(u_{\mathrm{box}}+u_{\mathrm{fluid}} \sin \theta\right) A}
\end{align*}
$$

