A spherical balloon is filled through an area, A_{1}, with air flowing at velocity, V_{1}, and constant density, ρ_{1}. The radius of the balloon, $R(t)$, can change with time, t. The average density within the balloon at any given time is $\rho_{\mathrm{b}}(t)$. Determine the relationship between the rate of change of the density within the balloon and the rest of the variables.

SOLUTION:

Apply conservation of mass to a control volume that deforms to follow the interior surface of the balloon.

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d}{d t}\left(\rho_{b} \frac{4}{3} \pi R^{3}\right)=\frac{4}{3} \pi R^{3} \frac{d \rho_{b}}{d t}+4 \pi \rho_{b} R^{2} \frac{d R}{d t}
$$

$$
\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho_{1} V_{1} A_{1}
$$

Substitute and simplify.

$$
\begin{align*}
& \frac{4}{3} \pi R^{3} \frac{d \rho_{b}}{d t}+4 \pi \rho_{b} R^{2} \frac{d R}{d t}-\rho_{1} V_{1} A_{1}=0 \\
& \frac{d \rho_{b}}{d t}=\frac{\rho_{1} V_{1} A_{1}-4 \pi \rho_{b} R^{2} \frac{d R}{d t}}{4 / 3 \pi R^{3}} \tag{2}
\end{align*}
$$

