Water enters a cylindrical tank with diameter, D, through two pipes at volumetric flow rates of Q_{1} and Q_{2} and leaves through a pipe with area, A_{3}, with an average velocity, \bar{V}_{3}. The level in the tank, h, does not remain constant. Determine the time rate of change of the level in the tank.

SOLUTION:

Apply conservation of mass to a control volume that deforms to follow the free surface of the liquid.

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d}{d t}\left(\rho h \frac{\pi D^{2}}{4}\right)=\rho \frac{d h}{d t} \frac{\pi D^{2}}{4} \\
=M_{\mathrm{CV}}
\end{gathered}
$$

$$
\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho Q_{2}-\rho Q_{1}+\rho \bar{V}_{3} A_{3}
$$

Substitute and re-arrange.

$$
\begin{align*}
& \rho \frac{d h}{d t} \frac{\pi D^{2}}{4}-\rho Q_{2}-\rho Q_{1}+\rho \bar{V}_{3} A_{3}=0 \\
& \frac{d h}{d t}=\frac{Q_{2}+Q_{1}-\bar{V}_{3} A_{3}}{\pi D^{2} / 4} \tag{2}
\end{align*}
$$

We could have also chosen a fixed control volume through which the free surface moves. Using this time of control volume, conservation of mass is given by:

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\text {rel }} \cdot d \mathbf{A}=0 \tag{3}
\end{equation*}
$$

where

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V=0 \text { (the mass of fluid in the fixed control volume remains constant) }
$$

$$
\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho Q_{2}-\rho Q_{1}+\rho \bar{V}_{3} A_{3}+\rho \frac{d h}{=_{\text {top }}} \frac{\pi D^{2}}{d t} \frac{m_{\mathrm{top}}}{4}
$$

Substitute and re-arrange.

$$
\begin{align*}
& \frac{d h}{d t}=\frac{\rho Q_{2}+\rho Q_{1}-\bar{V}_{3} A_{3}}{\pi D^{2} / 4} \\
& \frac{d h}{d t}=\frac{Q_{2}+Q_{1}-\bar{V}_{3} A_{3}}{\pi D^{2} / 4} \tag{4}
\end{align*}
$$

