Water enters a cylindrical tank through two pipes at volumetric flow rates of Q_{1} and Q_{2}. If the level in the tank remains constant, calculate the average velocity of the flow leaving the tank through a pipe with an area, A_{3}.

SOLUTION:

Apply conservation of mass to the fixed control volume shown below.

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=0 \quad \text { (steady flow, the mass in the control volume isn't changing with time) } \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho Q_{2}-\rho Q_{1}+\rho \bar{V}_{3} A_{3}
\end{aligned}
$$

Substitute and re-arrange.

$$
\begin{align*}
& -\rho Q_{2}-\rho Q_{1}+\rho \bar{V}_{3} A_{3}=0 \\
& \therefore \bar{V}_{3}=\frac{Q_{1}+Q_{2}}{A_{3}} \tag{2}
\end{align*}
$$

