An incompressible flow in a pipe has a velocity profile given by:

$$
u(r)=u_{c}\left(1-\frac{r^{2}}{R^{2}}\right)
$$

where u_{c} is the centerline velocity and R is the pipe radius. Determine the average velocity in the pipe.

SOLUTION:

The volumetric flow rate using the average velocity profile must give the same volumetric flow rate using the real velocity profile.

$$
\begin{equation*}
Q_{\text {real }}=\int_{\mathrm{A}} \mathbf{u} \cdot d \mathbf{A}=\int_{\mathrm{A}} d Q=\int_{y=-H}^{y=+H} u_{c}\left(1-r^{2} / R^{2}\right)(2 \pi r d r)=\frac{1}{2} \pi u_{c} R^{2} \tag{1}
\end{equation*}
$$

The velocity, $u(r)$, is nearly constant over the small annulus with radius $d r$ so we can write the volumetric flow rate over this small area as $d Q=u(r) d A=$ $u(r)(2 \pi r d r)$.
$Q_{\text {average }}=\int_{\mathrm{A}} \mathbf{u} \cdot d \mathbf{A}=\bar{u}\left(\pi R^{2}\right)$ (There is no need to integrate since the velocity is uniform over r.)
$Q_{\text {real }}=Q_{\text {average }} \Rightarrow \frac{1}{2} \pi u_{c} R^{2}=\bar{u}\left(\pi R^{2}\right)$
$\therefore \bar{u}=\frac{1}{2} u_{c}$

