Consider the flow of an incompressible fluid between two parallel plates separated by a distance $2 H$. If the velocity profile is given by:

$$
u=u_{c}\left(1-\frac{y^{2}}{H^{2}}\right)
$$

where u_{c} is the centerline velocity, determine the average velocity of the flow, \bar{u}. Assume the depth into the page is w.

SOLUTION:

The volumetric flow rate using the average velocity profile must give the same volumetric flow rate using the real velocity profile.

$$
Q_{\text {real }}=\int_{\mathrm{A}} \mathbf{u} \cdot d \mathbf{A}=\int_{\mathrm{A}} d Q=\int_{y=-H}^{y=+H} \underbrace{\left(1-y^{2} / H^{2}\right) \overbrace{d y w}^{=d A}}_{=d Q}=\frac{4}{3} u_{c} w H
$$

The velocity, $u(y)$, is nearly constant over the small distance $d y$ so we can write the volumetric flowrate over this small area as $d Q=u(y) d A=u(y)(d y w)$.
$Q_{\text {average }}=\int_{\mathrm{A}} \mathbf{u} \cdot d \mathbf{A}=\bar{u}(2 H w)$ (There is no need to integrate since the velocity is uniform over y.)

$$
\begin{equation*}
Q_{\text {real }}=Q_{\text {average }} \Rightarrow \frac{4}{3} u_{c} w H=\bar{u}(2 H w) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \bar{u}=\frac{2}{3} u_{c} \tag{4}
\end{equation*}
$$

