A cart hangs from a wire as shown in the figure below. Attached to the cart is a scoop of width W (into the page) which is submerged into the water a depth, h, from the free surface. The scoop is used to fill the cart tank with water of density, ρ.

a. Show that at any instant $V=V_{0} M_{0} / M$ where M is the mass of the cart and the fluid within the cart.
b. Determine the velocity, V, as a function of time.

SOLUTION:

Apply the linear momentum equation in the x-direction to the control volume shown using the indicated frame of reference.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V+\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{S, x}+F_{B, x}-\int_{\mathrm{CV}} a_{x / X} \rho d V
$$

where

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V \approx 0
$$

(The x-linear momentum within the CV is approximately zero in the given frame of reference.)

$$
\begin{aligned}
& \int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=-V \rho(-V) h W=\rho V^{2} h W \\
& F_{S, x}=0 \quad \text { (The pressure forces on the front and rear portions of the scoop cancel each other out.) } \\
& F_{B, x}=0 \\
& \int_{\mathrm{CV}} a_{x / X} \rho d V=\frac{d V}{d t} M
\end{aligned}
$$

Substitute and simplify:

$$
\begin{equation*}
\rho V^{2} h W=-\frac{d V}{d t} M \tag{1}
\end{equation*}
$$

Apply conservation of mass to the same control volume in order to determine the mass as a function of time.

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d M}{d t} \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho V h W
\end{aligned}
$$

Substitute and simplify:

$$
\begin{align*}
& \frac{d M}{d t}-\rho V h W=0 \\
& \frac{d M}{d t}=\rho V h W \tag{2}
\end{align*}
$$

Substitute Eqn. (2) into Eqn. (1):

$$
\begin{align*}
& \frac{d M}{d t} V=-\frac{d V}{d t} M \\
& \int_{M_{0}}^{M} \frac{d M}{M}=-\int_{V_{0}}^{V} \frac{d V}{V} \\
& \ln \frac{M}{M_{0}}=-\ln \frac{V}{V_{0}} \Rightarrow \frac{M}{M_{0}}=\frac{V_{0}}{V} \\
& \ln \frac{M}{M_{0}}=-\ln \frac{V}{V_{0}} \Rightarrow \frac{M}{M_{0}}=\frac{V_{0}}{V} \\
& \therefore V=V_{0} \frac{M_{0}}{M} \tag{3}
\end{align*}
$$

To determine the cart velocity as a function of time, combine Eqns. (1) and (3):

$$
\begin{align*}
& \rho V^{2} h W=-\frac{d V}{d t} \frac{V_{0}}{V} M_{0} \\
& \int_{0}^{t} d t=-\frac{M_{0} V_{0}}{\rho h W} \int_{V_{0}}^{V} \frac{d V}{V^{3}} \\
& t=\frac{M_{0} V_{0}}{2 \rho h W}\left(\frac{1}{V^{2}}-\frac{1}{V_{0}^{2}}\right) \Rightarrow V=\left(\frac{2 \rho h W t}{M_{0} V_{0}}+\frac{1}{V_{0}^{2}}\right)^{-1 / 2} \\
& \frac{V}{V_{0}}=\frac{1}{\sqrt{\frac{2 \rho h W V_{0} t}{M_{0}}+1}} \tag{4}
\end{align*}
$$

