A flat plate of mass, M, is located between two equal and opposite jets of liquid as shown in the figure. At time $t=0$, the plate is set into motion. Its initial speed is U_{0} to the right; subsequently its speed is a function of time, $U(t)$. The motion is without friction and parallel to the jet axes. The mass of liquid that adheres to the plate is negligible compared to M.

Obtain algebraic expressions (as functions of time for $t>0$) for:
a. the velocity of the plate and
b. the acceleration of the plate.
c. What is the maximum displacement of the plate from its original position?

Express all of your answers in terms of (a subset of) U_{0}, V, A, ρ, M, and t.

SOLUTION:

Apply the linear momentum equation in the x-direction to a control volume that surrounds the plate as shown in the figure below. Use a frame of reference (FOR) that is fixed to the control volume (noninertial).

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V+\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x}-\int_{\mathrm{CV}} a_{x / X} \rho d V \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V \approx 0 \text { (The CV's } x \text {-linear momentum is approximately zero in the given FOR.) } \tag{2}\\
\begin{aligned}
\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right) & =[(V-U)][-\rho(V-U) A]+[-(V+U)][-\rho(V+U) A] \\
& =-\rho(V-U)^{2} A+\rho(V+U)^{2} A \\
& =\rho\left(-V^{2}+2 U V-U^{2}+V^{2}+2 U V+U^{2}\right) A \\
& =4 \rho U V A
\end{aligned}
\end{align*}
$$

$F_{B, x}=F_{S, x}=0$ (No body or surface forces in the x-direction. The pressure everywhere is $p_{\mathrm{atm} .)}$.)

$$
\begin{equation*}
\int_{\mathrm{CV}} a_{x / X} \rho d V \approx M \frac{d U}{d t} \text { (Assume the plate mass is much larger than the water mass in the } \mathrm{CV} \text {.) } \tag{5}
\end{equation*}
$$

Substitute and simplify.

$$
\begin{align*}
& 4 \rho U V A=-M \frac{d U}{d t} \tag{6}\\
& \therefore \frac{d U}{d t}=-\frac{4 \rho U V A}{M} \tag{7}\\
& \int_{U=U_{0}}^{U=U} \frac{d U}{U}=-\frac{4 \rho V A}{M} \int_{t=0}^{t=t} d t \tag{8}\\
& \ln \left(\frac{U}{U_{0}}\right)=-\frac{4 \rho V A t}{M} \tag{9}\\
& \therefore \frac{U}{U_{0}}=\exp \left(-\frac{4 \rho V A t}{M}\right) \tag{10}
\end{align*}
$$

The acceleration is found by differentiating the velocity.

$$
\begin{equation*}
a=\frac{d U}{d t}=-\frac{4 \rho U_{0} V A}{M} \exp \left(-\frac{4 \rho V A t}{M}\right) \tag{11}
\end{equation*}
$$

The displacement of the plate is found by integrating the velocity in time.

$$
\begin{align*}
& U=\frac{d x}{d t}=U_{0} \exp \left(-\frac{4 \rho V A t}{M}\right) \tag{12}\\
& \int_{x=0}^{x=x} d x=U_{0} \int_{t=0}^{t=t} \exp \left(-\frac{4 \rho V A t}{M}\right) d t \tag{13}\\
& \therefore x=\frac{M U_{0}}{4 \rho V A}\left[1-\exp \left(-\frac{4 \rho V A t}{M}\right)\right] \tag{14}
\end{align*}
$$

The maximum displacement occurs as $t \rightarrow \infty$.

$$
\begin{equation*}
\therefore x_{\max }=\frac{M U_{0}}{4 \rho V A} \tag{15}
\end{equation*}
$$

