A cart with frictionless wheels holds a water tank, motor, pump, and nozzle. The cart is on horizontal ground and initially still. At time zero the cart has a mass M_{0} and the pump is started to produce a jet of water with constant area A_{j}, velocity V_{j} at an angle θ with respect to the horizontal. Find and solve the equations governing the mass and velocity of the cart as a function of time.

SOLUTION:

Apply the linear momentum equation in the x-direction to a control volume surrounding the cart. Use a frame of reference fixed to the control volume (non-inertial).

The frame of reference is fixed to the (accelerating) control volume and, hence, is non-inertial.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V+\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x}-\int_{\mathrm{CV}} a_{x / X} \rho d V
$$

where

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V \approx 0
$$

(Using the given FOR, the rate of change of the CV linear momentum is nearly zero since most of the mass in the CV has a constant $(=0)$ horizontal velocity.)

$$
\begin{aligned}
& \int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=\left(-V_{j} \cos \theta\right)\left(\rho V_{j} A_{j}\right)=-\rho V_{j}^{2} A_{j} \cos \theta \\
& F_{B, x}=0 \\
& F_{S, x}=0
\end{aligned}
$$

$$
\int_{\mathrm{CV}} a_{x / X} \rho d V=M_{\mathrm{CV}} \frac{d U}{d t} \text { (Note that the CV mass changes with time.) }
$$

Substitute and solve for the cart acceleration.

$$
\begin{equation*}
\frac{d U}{d t}=\frac{\rho V_{j}^{2} A_{j} \cos \theta}{M_{\mathrm{CV}}} \tag{1}
\end{equation*}
$$

Determine the mass inside the control volume using conservation of mass applied to the same control volume.

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d M_{\mathrm{CV}}}{d t} \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=\rho V_{j} A_{j}
\end{aligned}
$$

Substitute and solve for M_{CV}.

$$
\begin{align*}
& \frac{d M_{\mathrm{cV}}}{d t}=-\rho V_{j} A_{j} \\
& \int_{M_{0}}^{M_{\mathrm{cv}}} d M_{\mathrm{cv}}=-\rho V_{j} A_{j} \int_{0}^{t} d t \text { (Note that } \rho V_{j} A_{j} \text { is constant with respect to time.) } \\
& M_{\mathrm{CV}}=M_{0}-\rho V_{j} A_{j} t \tag{2}
\end{align*}
$$

Substitute Eqn. (2) into Eqn. (1) and solve for U.

$$
\begin{align*}
& \frac{d U}{d t}=\frac{\rho V_{j}^{2} A_{j} \cos \theta}{M_{0}-\rho V_{j} A_{j} t} \\
& \int_{0}^{U} d U=\int_{0}^{t} \frac{\rho V_{j}^{2} A_{j} \cos \theta d t}{M_{0}-\rho V_{j} A_{j} t} \\
& U=\frac{\rho V_{j}^{2} A_{j} \cos \theta}{-\rho V_{j} A_{j}} \ln \left(\frac{M_{0}-\rho V_{j} A_{j} t}{M_{0}}\right) \\
& \therefore U=-V_{j} \cos \theta \ln \left(1-\frac{\rho V_{j} A_{j} t}{M_{0}}\right) \tag{3}
\end{align*}
$$

