The tank shown rolls along a level track. Water received from a jet is retained in the tank. The tank is to accelerate from rest toward the right with constant acceleration, a. Neglect wind and rolling resistance. Find an algebraic expression for the force (as a function of time) required to maintain the tank acceleration at constant a.

SOLUTION:

First apply conservation of mass to a control volume surrounding the cart (shown below) in order to determine how the cart mass changes with time.
 $x y$ is fixed to the cart.
jet velocity relative to
the cart $=(V-U)$

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=\frac{d M_{\mathrm{CV}}}{d t} \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho(V-U) A
\end{aligned}
$$

Substitute and re-arrange.

$$
\begin{align*}
& \frac{d M_{\mathrm{CV}}}{d t}-\rho(V-U) A=0 \\
& \frac{d M_{\mathrm{CV}}}{d t}=\rho(V-U) A \tag{2}
\end{align*}
$$

Since the cart acceleration is constant $(=a)$, we may write:

$$
\begin{equation*}
U=\text { at } \quad \text { (Note that } U(t=0)=0 \text { since the cart starts from rest.) } \tag{3}
\end{equation*}
$$

Note that Eqn. (3) is only true when $a=$ constant. Otherwise, if $a=a(t)$ one must write the velocity as:

$$
\begin{equation*}
U=U_{0}+\int_{0}^{t} a d t \tag{4}
\end{equation*}
$$

Substitute Eqn. (3) into Eqn. (2) and solve the resulting differential equation.

$$
\begin{align*}
& \frac{d M_{\mathrm{CV}}}{d t}=\rho(V-a t) A \tag{5}\\
& M_{\mathrm{CV}}=M_{\mathrm{CV}} \\
& \int_{M_{\mathrm{CV}}=M_{0}} d M_{\mathrm{CV}}=\int_{t=0}^{t=t} \rho(V-a t) A d t \\
& M_{\mathrm{CV}}-M_{0}=\rho\left(V t-\frac{1}{2} a t^{2}\right) A \tag{6}\\
& M_{\mathrm{CV}}=M_{0}+\rho\left(V t-\frac{1}{2} a t^{2}\right) A
\end{align*}
$$

Now apply the linear momentum equation in the x direction to the same control volume. Note that the frame of reference $x y$ is not inertial since the cart is accelerating.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V+\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x}-\int_{\mathrm{CV}} a_{x / X} \rho d V
$$

where

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{x} \rho d V \approx 0 \text { (most of the mass inside the } \mathrm{CV} \text { has zero velocity in the given frame of reference) }
$$

$\int_{\mathrm{CS}} u_{x}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=-\rho(V-U)^{2} A$
$F_{B, x}=0$
$F_{S, x}=-F$
$\int_{\mathrm{CV}} a_{x / X} \rho d V=a M_{\mathrm{CV}}$
Substitute and re-arrange.

$$
\begin{align*}
& -\rho(V-U)^{2} A=-F-a M_{\mathrm{CV}} \\
& F=\rho(V-U)^{2} A-a M_{\mathrm{CV}} \tag{8}
\end{align*}
$$

Now substitute Eqns. (3) and (6) into Eqn. (8).

$$
\begin{equation*}
F=\rho(V-a t)^{2} A-a\left[M_{0}+\rho\left(V t-\frac{1}{2} a t^{2}\right) A\right] \tag{9}
\end{equation*}
$$

Now let's solve the problem using a frame of reference fixed to the ground (XYZ - inertial).

$$
\frac{d}{d t} \int_{\mathrm{CV}} u_{X} \rho d V+\int_{\mathrm{CS}} u_{X}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, X}+F_{S, X}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} u_{X} \rho d V=\frac{d}{d t}\left(M_{\mathrm{CV}} U\right)=M_{\mathrm{CV}} \frac{d U}{d t}+U \frac{d M_{\mathrm{CV}}}{d t} \\
& \int_{\mathrm{CS}} u_{X}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=(V)[-\rho(V-U) A]=-\rho V(V-U) A \\
& F_{B, X}=0 \\
& F_{S, X}=-F
\end{aligned}
$$

Substitute and utilize Eqn. (5) to simplify.

$$
\begin{align*}
& M_{\mathrm{CV}} \frac{d U}{d t}+U \frac{d M_{\mathrm{CV}}}{d t}-\rho V(V-U) A=-F \\
& M_{\mathrm{CV}} \frac{d U}{d t}+U \rho(V-U) A-\rho V(V-U) A=-F \\
& F=-a M_{\mathrm{CV}}-U \rho(V-U) A+\rho V(V-U) A \\
& F=\rho(V-U)^{2} A-a M_{\mathrm{CV}} \tag{10}
\end{align*}
$$

Eqn. (10) is identical to Eqn. (8) as expected!

