A fluid enters a horizontal, circular cross-sectioned, sudden contraction nozzle. At section 1, which has diameter D_{1}, the velocity is uniformly distributed and equal to V_{1}. The gage pressure at 1 is p_{1}. The fluid exits into the atmosphere at section 2 , with diameter D_{2}. Determine the force in the bolts required to hold the contraction in place. Neglect gravitational effects and assume that the fluid is inviscid.

SOLUTION:

Apply conservation of linear momentum in the X-direction to the fixed control volume shown below.

$\forall \rightarrow X$ $\begin{aligned} & \text { The CS cuts through the bolts. So that } F_{\text {bolts }} \text { is the } \\ & \text { force one side of the bolts applies to the other side. }\end{aligned}$

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} u_{X} \rho d V+\int_{\mathrm{Cs}} u_{X}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, X}+F_{S, X} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} u_{X} \rho d V=0 \quad \text { (steady flow) } \\
& \int_{\mathrm{Cs}} u_{X}\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=\rho V_{1}\left(\begin{array}{c}
=u_{X} \\
=\mathbf{u}_{\mathrm{rel}} \\
V_{1} \hat{\mathbf{i}}
\end{array} \begin{array}{c}
=\mathbf{A} \\
4
\end{array}\right)+\rho D_{1}^{2} \hat{\mathbf{i}} V_{2}\left(\begin{array}{c}
=\mathbf{A} \\
=\mathbf{u}_{\mathrm{rel}} \\
V_{2} \hat{\mathbf{i}} \cdot \frac{\pi D_{2}^{2}}{4} \hat{\mathbf{i}}
\end{array}\right)=-\rho V_{1}^{2} \frac{\pi D_{1}^{2}}{4}+\rho V_{2}^{2} \frac{\pi D_{2}^{2}}{4}
\end{aligned}
$$

(Note that V_{2} is unknown for now.)

$$
\begin{aligned}
& F_{B, X}=0 \\
& F_{S, X}=p_{1, \text { gage }} \frac{\pi D_{1}^{2}}{4}+F_{\mathrm{bolts}}
\end{aligned}
$$

(Note that $p_{2, \text { gage }}=0$ since $p_{2, \text { abs }}=p_{\text {atm. }}$. We could have also worked the problem using absolute pressures everywhere. The pressure force on the left hand side would be $p_{1, a b s} \pi D_{1}{ }^{2} / 4$ and the pressure force on the right hand side would be $p_{\mathrm{atm}} \pi D_{1}^{2} / 4$ (note that the diameter is D_{1} and not D_{2}).)

Substitute and re-arrange.

$$
\begin{align*}
& -\rho V_{1}^{2} \frac{\pi D_{1}^{2}}{4}+\rho V_{2}^{2} \frac{\pi D_{2}^{2}}{4}=p_{1, \text { gage }} \frac{\pi D_{1}^{2}}{4}+F_{\mathrm{bolts}} \\
& F_{\mathrm{bolts}}=-\rho V_{1}^{2} \frac{\pi D_{1}^{2}}{4}+\rho V_{2}^{2} \frac{\pi D_{2}^{2}}{4}-p_{1, \text { gage }} \frac{\pi D_{1}^{2}}{4} \tag{2}
\end{align*}
$$

To determine V_{2}, apply conservation of mass to the same control volume.

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{Cs}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=0 \\
& \int_{\mathrm{Cs}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho V_{1} \frac{\pi D_{1}^{2}}{4}+\rho V_{2} \frac{\pi D_{2}^{2}}{4}
\end{aligned}
$$

Substitute and simplify.

$$
\begin{align*}
& -\rho V_{1} \frac{\pi D_{1}^{2}}{4}+\rho V_{2} \frac{\pi D_{2}^{2}}{4}=0 \\
& V_{2}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2} \tag{4}
\end{align*}
$$

Substitute Eqn. (4) into Eqn. (2) and simplify.
$F_{\text {bolts }}=-\rho V_{1}^{2} \frac{\pi D_{1}^{2}}{4}+\rho V_{1}^{2}\left(\frac{D_{1}}{D_{2}}\right)^{4} \frac{\pi D_{2}^{2}}{4}-p_{1, \mathrm{gage}} \frac{\pi D_{1}^{2}}{4}$
$F_{\text {bolts }}=\rho V_{1}^{2} \frac{\pi D_{1}^{2}}{4}\left[\left(\frac{D_{1}}{D_{2}}\right)^{2}-1\right]-p_{1, \text { gage }} \frac{\pi D_{1}^{2}}{4}$
(5)

Note that $F_{\text {bolts }}$ was assumed to be positive when acting in the $+X$ direction (causing compression in the bolts). If $F_{\text {bolts }}<0$ then the bolts will be in tension.

