An incompressible, viscous fluid with density, ρ, flows past a solid flat plate which has a depth, b, into the page. The flow initially has a uniform velocity U_{∞}, before contacting the plate. After contact with the plate at a distance x downstream from the leading edge, the flow velocity profile is altered due to the no-slip condition. The velocity profile at location x is estimated to have a parabolic shape, $u=U_{\infty}((2 y / \delta)$ $\left.(y / \delta)^{2}\right)$, for $y \leq \delta$ and $u=U_{\infty}$ for $y \geq \delta$ where δ is termed the "boundary layer thickness."

1. Determine the upstream height from the plate, h, of a streamline which has a height, δ, at the downstream distance x. Express your answer in terms of δ.
2. Determine the force the plate exerts on the fluid over the distance x. Express your answer in terms of ρ, U_{∞}, b, and δ. You may assume that the pressure everywhere is p_{∞}. The force the drag exerts on the plate is called the "skin friction" drag.

BRIEF SOLUTION:

1. Apply conservation of mass to a control volume that is adjacent to the plate, crosses perpendicularly to the stream at the leading edge of the plate, follows a streamline, and crosses perpendicularly to the stream at the location where the boundary layer has thickness, δ. Note that there is no flow across a streamline.
2. Apply the linear momentum equation to the same control volume used in Step 1. Be sure to include the force the plate exerts on the control volume.

DETAILED SOLUTION:

Apply conservation of mass to the fixed control volume shown below.

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\text {rel }} \cdot d \mathbf{A}=0
$$

where

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V= & 0 \text { (steady flow) } \\
\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A} & =-\rho U_{\infty} h b+\int_{y=0}^{y=\delta} \rho U_{\infty}\left[2 \frac{y}{\delta}-\frac{y^{2}}{\delta^{2}}\right] d y b=-\rho U_{\infty} h b+\rho U_{\infty}\left(\delta-\frac{1}{3} \delta\right) b \\
& =-\rho U_{\infty} h b+\frac{2}{3} \rho U_{\infty} \delta b
\end{aligned}
$$

(Note that there is no flow across the streamline.)
Substitute into conservation of mass and solve for h.

$$
\begin{equation*}
h=\frac{2}{3} \delta \tag{1}
\end{equation*}
$$

Now apply the linear momentum equation in the x-direction on the same control volume.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u \rho d V+\int_{\mathrm{CS}} u\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x}
$$

where

$$
\frac{d}{d t} \int_{\mathrm{CV}} u \rho d V=0 \quad \text { (steady flow) }
$$

$$
\begin{aligned}
\int_{\mathrm{CS}} u\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right) & =-\rho U_{\infty}^{2} h b+\int_{y=0}^{y=\delta} \rho U_{\infty}^{2}\left[2 \frac{y}{\delta}-\frac{y^{2}}{\delta^{2}}\right]^{2} d y b \\
& =-\rho U_{\infty}^{2} h b+\rho U_{\infty}^{2} b \int_{0}^{\delta}\left[4 \frac{y^{2}}{\delta^{2}}-4 \frac{y^{3}}{\delta^{3}}+\frac{y^{4}}{\delta^{4}}\right] d y \\
& =-\rho U_{\infty}^{2} h b+\rho U_{\infty}^{2} b\left[\frac{4}{3} \delta-\delta+\frac{1}{5} \delta\right] \\
& =-\rho U_{\infty}^{2} h b+\frac{8}{15} \rho U_{\infty}^{2} b \delta
\end{aligned}
$$

$$
\begin{aligned}
& F_{B, x}=0 \\
& \left.F_{S, x}=-F \quad \text { (the pressure everywhere is } p_{\infty}\right)
\end{aligned}
$$

Substitute and simplify, making use of Eqn. (1).

$$
\begin{align*}
& -\rho U_{\infty}^{2}\left(\frac{2}{3} \delta\right) b+\frac{8}{15} \rho U_{\infty}^{2} b \delta=-F \\
& \left\lvert\, F=\frac{2}{15} \rho U_{\infty}^{2} b \delta\right. \tag{2}
\end{align*}
$$

We could have also determined the force using a different control volume as shown below.

Determine the mass flow rate out of the control volume through the top using conservation of mass.

$$
\frac{d}{d t} \int_{\mathrm{CV}} \rho d V+\int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=0
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} \rho d V=0 \text { (steady flow) } \\
& \int_{\mathrm{CS}} \rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}=-\rho U_{\infty} \delta b+\int_{y=0}^{y=\delta} \rho U_{\infty}\left[2 \frac{y}{\delta}-\frac{y^{2}}{\delta^{2}}\right] d y b+m_{\mathrm{top}}=-\frac{1}{3} \rho U_{\infty} \delta b+m_{\mathrm{top}}
\end{aligned}
$$

Substitute and solve for the mass flow rate.

$$
\begin{equation*}
m_{\text {top }}=\frac{1}{3} \rho U_{\infty} \delta b \tag{3}
\end{equation*}
$$

Now apply the linear momentum equation in the x-direction to the same control volume.

$$
\frac{d}{d t} \int_{\mathrm{CV}} u \rho d V+\int_{\mathrm{CS}} u\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=F_{B, x}+F_{S, x}
$$

where

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} u \rho d V=0 \text { (steady flow) } \\
& \begin{aligned}
\int_{\mathrm{CS}} u\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right) & =-\rho U_{\infty}^{2} \delta b+\int_{y=0}^{y=\delta} \rho U_{\infty}^{2}\left[2 \frac{y}{\delta}-\frac{y^{2}}{\delta^{2}}\right]^{2} d y b+m_{\mathrm{top}} U_{\infty} \\
& =-\frac{7}{15} \rho U_{\infty}^{2} \delta b+m_{\mathrm{top}} U_{\infty}
\end{aligned}
\end{aligned}
$$

(Note that the horizontal component of the velocity at the top is U_{∞} since it's outside of the boundary layer.)
$F_{B, x}=0$
$F_{S, x}=-F \quad$ (the pressure everywhere is p_{∞})
Substitute and simplify making use of Eqn. (3).

$$
-\frac{7}{15} \rho U_{\infty}^{2} \delta b+\left(\frac{1}{3} \rho U_{\infty} \delta b\right) U_{\infty}=-F
$$

$$
F=\frac{2}{15} \rho U_{\infty}^{2} \delta b \quad \text { (This is the same answer as before!) }
$$

