A thin smooth sign is attached to the side of a truck as shown. Estimate the skin friction drag on the sign when the truck speed is 55 mph .

SOLUTION:

Assume that the boundary layer forms at the front of the trailer.

$$
\begin{aligned}
& L_{1}=5 \mathrm{ft} \\
& L_{2}=25 \mathrm{ft} \\
& b=4 \mathrm{ft} \\
& U=55 \mathrm{mph}=80.7 \mathrm{ft} / \mathrm{s} \\
& \mathrm{~V}_{\text {air }}=1.57^{*} 10^{-4} \mathrm{ft}^{2} / \mathrm{s} \\
& \rho_{\text {air }}=2.38^{*} 10^{-3} \mathrm{slugs} / \mathrm{ft}^{3}
\end{aligned}
$$

To find the drag on the sign, determine the drag on region 2 and subtract the drag from region 1.

$$
\begin{equation*}
D_{\text {sign }}=D_{2}-D_{1} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{i}=c_{D i} \frac{1}{2} \rho U^{2} L_{i} b \quad(i=1 \text { or } 2) \tag{2}
\end{equation*}
$$

Substitute and simplify.

$$
\begin{equation*}
D_{\text {sign }}=\frac{1}{2} \rho U^{2} b\left(c_{D 2} L_{2}-c_{D 1} L_{1}\right) \tag{3}
\end{equation*}
$$

The drag coefficients are determined from the Reynolds numbers at each region's trailing edge.

$$
\begin{align*}
& \operatorname{Re}_{1}=\frac{U L_{1}}{v}=\frac{(80.7 \mathrm{ft} / \mathrm{s})(5 \mathrm{ft})}{\left(1.57 * 10^{-4} \mathrm{ft}^{2} / \mathrm{s}\right)}=2.6 * 10^{6} \quad \text { (turbulent!) } \tag{4}\\
& \operatorname{Re}_{2}=\frac{U L_{2}}{v}=\frac{(80.7 \mathrm{ft} / \mathrm{s})(25 \mathrm{ft})}{\left(1.57 * 10^{-4} \mathrm{ft}^{2} / \mathrm{s}\right)}=1.3 * 10^{7} \quad \text { (turbulent!) } \tag{5}
\end{align*}
$$

Assume that the flow is fully turbulent throughout regions 1 and 2 (neglect any laminar flow contribution) so that:

$$
\begin{align*}
& c_{D 1}=\frac{0.0742}{\operatorname{Re}_{1}^{1 / 5}}=\frac{0.0742}{\left(2.6 * 10^{6}\right)^{1 / 5}}=3.87 * 10^{-3} \tag{6}\\
& c_{D 2}=\frac{0.0742}{\operatorname{Re}_{2}^{1 / 5}}=\frac{0.0742}{\left(1.3 * 10^{7}\right)^{1 / 5}}=2.80 * 10^{-3} \tag{7}
\end{align*}
$$

Substitute into Eqn. (3) and evaluate.

$$
\begin{align*}
& D_{\text {sign }}=\frac{1}{2}\left(2.38 * 10^{-3} \text { slugs } / \mathrm{ft}^{3}\right)(80.7 \mathrm{ft} / \mathrm{s})^{2}(4 \mathrm{ft})\left[\left(2.80^{*} 10^{-3}\right)(25 \mathrm{ft})-\left(3.87 * 10^{-3}\right)(5 \mathrm{ft})\right] \\
& \therefore D_{\text {sign }}=1.57 \mathrm{lb}_{\mathrm{f}} \tag{8}
\end{align*}
$$

