

Entropy change for an incompressible substance (Mythbusters hot water heater "rocket": https://www.youtube.com/watch?v=jbreKn4PoAc)

From the *T-ds* relations

$$Tds = du + pdv$$

For an incompressible substance

$$dv = 0$$
 and $du = c(T)dT$

For the incompressible substance model

- Liquids and solids are often approximated as being incompressible.
- v = constant

- v = constant• c(T), u = u(T), h = h(T, p), s = s(T)• $u(T_2) u(T_1) = \int_{T_1}^{T_2} c(T) dT$ $h(T_2, p_2) h(T_1, p_1) = u(T_2) u(T_1) + (p_2 p_1)v$ $s(T_2) s(T_1) = \int_{T_1}^{T_2} c(T) \frac{dT}{T}$

If the temperature range isn't too large, then it's reasonable to assume $c \approx \text{constant}$,

- $u(T_2) u(T_1) \approx c(T_2 T_1)$ $h(T_2, p_2) h(T_1, p_1) \approx c(T_2 T_1) + (p_2 p_1)v$ $s(T_2) s(T_1) \approx cln\left(\frac{T_2}{T_1}\right)$