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NOTES ON THERMODYNAMICS, FLUID MECHANICS, AND GAS DYNAMICS
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FIGURE 3.33. Schematic used to prove the first and second corollaries to the Second Law.

there is no net energy transfer to/from it since Qg is removed by the irreversible system, but then replaced
by the reversible one. The energy received by the combined system from the cold reservoir is Qc,r —Qc;1 > 0
and the net work done by the combined system is Wy, 1 — Wiy r > 0. This combined system is shown in the
right-hand schematic of Figure 3.33. Since the combined system operates over a cycle and interacts with a
single thermal reservoir, from the Kelvin-Plank Statement of the Second Law (Eq. (3.103)),

Whyt — Wiyr <0 = Why1 < Wiy r. (3.113)

Note that the inequality has been used since the combined system includes irreversibilities. Since the thermal
efficiency is given by,

Why
= — 3.114
"= o, (3.114)
and Qg is the same for the irreversible and reversible systems, we conclude that,
NRrR > 1NI- (3.115)

Thus, we have proven the first corollary to the Second Law.
The second corollary can be proven by replacing the irreversible system in Figure 3.33 with a reversible one
so that there are two reversible systems (call these “R1” and “R2”). Following the same arguments as before,
we will arrive at the following statement using the Kelvin-Plank Statement of the Second Law,

Wby’RQ — Wby,Rl =0 = Wby,RQ = Wby,R1~ (3.116)
Here, the equals sign is used since the combined system is reversible. Since the works and heat transfers are
the same, the efficiencies of the two reversible systems must be identical.

Proofs for the third and fourth corollaries are not provided here, but follow similar arguments.

3.6.5. Kelvin Absolute Temperature Scale

Note that from the Second Law Corollaries, the reversible cycle performance measures depend solely on the

interaction with the thermal reservoirs, namely (Q¢/Qp) in Egs. (3.104) - (3.106) since all reversible cycle

efficiencies are identical. Since it is the temperature difference between the reservoirs that drives this heat
Qo

transfer, we can conclude that,
Tc )
=fen | =— 1, 3.117
QH rev. cycle f (TH ( )

where T and Ty are the temperatures of the cold and hot reservoirs, respectively. Note that since the left
hand side of the equation is dimensionless, the right hand side must also be dimensionless. The function
fen is determined by how we define temperature. In the Kelvin absolute temperature scale, we define the
temperatures such that the function is a simple linear one, i.e.,

Q| T
Qu e

(3.118)

rev. cycle
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By definition, the ratio of temperatures on the Kelvin scale is equal to the ratio of the heat fluxes. Equa-
tion (3.118) only provides a ratio of temperatures; it doesn’t actually set a value for the temperature. To
complete the thermodynamic scale, we arbitrarily set the value of T' on the Kelvin scale at the triple point
of water to be,

Notes:
(1)

(2)

Tiviple pt of H20 = 273.16 K. (3.119)

Since the performance of a reversible cycle is independent of the details of the cycle, e.g., work-
ing fluid, cycle components, etc., it also means that (Qc/QH )rev,cycle and thus To /Ty are also
independent of the details of the cycle. This means that the Kelvin absolute temperature scale is
independent of any substance or cycle details.

Since Q¢ > 0 (to satisfy the Kelvin-Planck statement of the Second Law), it also means that
Tc > 0. Thus, the minimum temperature limit on the Kelvin scale is zero Kelvin, which can never
be reached as stipulated by the Second Law.

We can substitute Eq. (3.118) into Egs. (3.104) - (3.106) to determine reversible, i.e., ideal, cycle
performance measures,

(a) Power cycle reversible thermal efficiency,

Tc
oy = 1 — —. 3.120
" T (3.120)
(b) Refrigeration cycle reversible coeflicient of performance,
Te
COProfrov = ————. 3.121
£, T To (3.121)
(c) Heat pump cycle reversible coefficient of performance,
Ty
COPygprey = ———. 3.122
HP,re TH — TC ( )

Interestingly, the maximum performance of these cycles is independent of the details of the cycle
(design, working materials, etc.). The only factors that matter are the (absolute) temperatures of
the thermal reservoirs.

For a power cycle, the maximum efficiency increases as Ty increases or T decreases. For example,
if a combustion process is used to supply heat to the system, the hotter the combustion gases (T ),
the more efficient the reversible cycle. In most practical power cycles, the cycle discharges heat
to the environment so there is often less control over T¢. Similar arguments may be made for
refrigeration and heat pump cycles.

We can still calculate the efficiency and COPs of any cycle, reversible or irreversible, using Egs. (3.104)
- (3.106). However, for a reversible cycle, we can also make use of Egs. (3.120) - (3.122).
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An internally reversible power cycle with a thermal efficiency of 40% receives 50 kJ of energy by heat
transfer from a hot reservoir at 600 K and rejects energy by heat transfer to a cold reservoir at a temperature
Tc. Determine the energy rejected and the temperature 7c.

SOLUTION:
We can determine the hegt transfer to the cold reservoir using the hot body
power cycle thermal efficiency in terms of the heat transfers, O
T e
Using the given data, I C.cycle
gH,cycle i 05301;] , cold body

= |Oceycle = 30 kJ|.

The temperature of the reservoir can be found by noting that for a reversible cycle,

T,
Q_H =_H Tc = TH & (2)
QC ev, TC H rev,
cycle cycle
Using the parameters given above in addition to 7# = 600 K,
Tc =360 K|.
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